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Abstract——Central nervous system (CNS) barriers pre-
dominantly mediate the immune-privileged status of the
brain, and are also important regulators of neuroimmune
communication. It is increasingly appreciated that
communication between the brain and immune system
contributes to physiologic processes, adaptive responses,
and disease states. In this review, we discuss the highly
specialized features of brain barriers that regulate
neuroimmune communication in health and disease. In
section I, we discuss the concept of immune privilege,
provideworkingdefinitionsofbrainbarriers, andoutline
thehistoricalwork that contributed to theunderstandingof
CNS barrier functions. In section II, we discuss the unique
anatomic, cellular, and molecular characteristics of the

vascular blood–brain barrier (BBB), blood–cerebrospinal
fluid barrier, and tanycytic barriers that confer their
functions as neuroimmune interfaces. In section III, we
consider BBB-mediated neuroimmune functions and
interactions categorized as five neuroimmune axes:
disruption, responses to immune stimuli, uptake and
transport of immunoactive substances, immune cell
trafficking, and secretions of immunoactive substances.
In section IV, we discuss neuroimmune functions of
CNS barriers in physiologic and disease states, as well
as pharmacological interventions for CNS diseases.
Throughout this review, we highlight many recent advances
that have contributed to the modern understanding of
CNS barriers and their interface functions.

ABBREVIATIONS: Ab, amyloid b; ABC, ATP-binding cassette; AD, Alzheimer disease; AJ, adherens junction; ART, anti-retroviral therapy; BALT,
bronchus-associated lymphoid tissue; BBB, blood–brain barrier; BCRP, breast cancer resistance protein; BCSFB, blood–CSF barrier; BEC, brain
endothelial cell; BUI, brain uptake index; CCL, C-C motif chemokine ligand; CICD, chemotherapy-induced cognitive dysfunction; CMB, cerebral
microbleed; CNS, central nervous system; COX, cyclooxygenase; CP, choroid plexus; CPE, choroid plexus epithelium; CSF, cerebrospinal fluid; CVO,
circumventricular organ; DHA, docosahexaenoic acid; DOX, doxorubicin; EAE, experimental autoimmune encephalomyelitis; ECM, extracellular matrix;
FIRES, febrile infection-related epilepsy syndrome; GRP78, glucose-regulated protein 78; HAART, highly active antiretroviral therapy; HAND, HIV-
associated neurologic disorder; HIV, human immunodeficiency virus; HIVE, HIV encephalitis; IDT, indicator diffusion technique; IFN, interferon; IL,
interleukin; IL-1R1, type 1 IL-1 receptor; ISF, interstitial fluid; JAM, junctional adhesionmolecule; LPC, lysophosphatidylcholine; LPS, lipopolysaccharide;
LRP, low-density lipoprotein receptor-related protein; LTP, long-term potentiation; ME, median eminence; MFSD2A, major facilitator superfamily
domain-containing 2A; MMP, matrix metalloproteinase; MRP, multidrug resistance protein; MS, multiple sclerosis; NF-kB, nuclear factor kB; NLR,
nucleotide-binding oligomerization domain-like receptor; NMO, neuromyelitis optica; NNRTI, non-NRTI; NOD, nucleotide-binding oligomerization
domain; NRTI, nucleoside reverse transcriptase inhibitor; NVU, neurovascular unit; OVLT, organum vasculosum of the lamina terminalis; PDGF-B,
platelet-derived growth factor subunit B; PDGFRb, platelet-derived growth factor receptor b; Pgp, P-glycoprotein; Plvap, plasmalemma vesicle-associated
protein; PML, progressive multifocal leukoencephalopathy; RAGE, receptor for advanced glycation endproducts; RMT, receptor-mediated transcytosis; T3,
triiodothyronine; TEER, transendothelial electrical resistance; TGF, transforming growth factor; TJ, tight junction; TNF, tumor necrosis factor; TSH,
thyroid-stimulating hormone; VCAM, vascular cell adhesion molecule; VEGF, vascular endothelial growth factor; ZO, zonula occulins.
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I. Introduction

A. The Blood–Brain Barrier and Immune Privilege

The central nervous system (CNS) has traditionally
been viewed as an immune-privileged area in that it is
protected against the immune events of the periphery.
This immune privilege was once considered absolute
with its violation only occurring in disease states,
resulting in dire consequences for the CNS. Current
appreciation is that the immune privilege is real, but
relative. Both past and current thinking ascribes this
immune privilege to the BBB. By its ability to prevent
(past thinking) or to control and modulate (current
thinking) the impact of peripheral immune events on
the CNS, the BBB acts to protect the brain from
peripheral immune events. However, whereas the
barrier aspects of the BBB induce immune privilege, it is
also the BBB that makes such protection relative. The
BBBmakes immune privilege relative by possessing ways
in which it controls the interplay of CNS and peripheral
immune events. Such interplay relies on the transfer of
immune elements (substances or cells) between the CNS
and blood; such a transfer can be termed a neuroimmune
axis. Five neuroimmune axes can be currently identified
that involve the BBB and a sixth that does not but is
mediated by afferent and efferent nerve activities (Goehler
et al., 1999; Romeo et al., 2001; Kelley et al., 2003; Kenney
and Ganta, 2014; Kanashiro et al., 2016). The five
pathways involving the BBB are as follows: 1) BBB
disruption; 2)modulation of barrier and interface functions
(other than BBB integrity) by immune substances; 3)
transport, penetration, and uptake of neuroimmune-
related substances; 4) immune cell trafficking between
blood and brain; and 5) immune secretions of the barrier
cells. Most likely, these axes work together rather than
independently, and it is one of the great promises of the
field, as well as one of its greatest challenges, that it will
elucidate the mechanisms of neuroimmune integration
that underlie such diverse phenomena as sleep, responses
to sepsis, mindfulness, and depression. Below, we consider
each of the five axes involving the BBB.
This review will first consider the concepts, compo-

nents, functions, and interactions that form the basis of
the BBB field that are germane to neuroimmunology,
then discuss how the BBBdefines and participates in the
five known neuroimmune axes, and finally discuss how
the BBB in general and how these axes in particular are
involved in CNS diseases, drug delivery, and therapy.

B. Working Definitions of Brain Barriers
and Interfaces

BBB is a term that refers to one function of a highly
specialized cellular interface between the blood and the
CNS parenchyma. The barrier function of this interface
prevents unregulated diffusion of circulating sub-
stances into the brain, which is critical for maintaining
a CNS milieu that supports neuronal function and

survival. Generally, the BBB refers to the vascular
barrier where capillary endothelial cells are the in-
terface between the blood and brain parenchyma.
Specialized vascular CNS barriers that have distinct
features from brain parenchymal vessels include the
blood–retinal barrier, the blood–nerve barrier, the
blood–labyrinth barriers, and the blood–spinal cord
barrier (Neuwelt et al., 2008). Other cellular barriers/
interfaces such as the choroid plexus epithelial cells of
the blood–cerebrospinal fluid (CSF) barrier (BCSFB)
and tanycytes that are located along the ventricular
boundaries of circumventricular organs (CVOs) may be
considered arms of the BBB as well because they also
prevent unregulated leakage of blood components into
the CSF and adjacent brain interstitial fluid (ISF)
(Ghersi-Egea et al., 1996). Furthermore, these inter-
faces have many nonbarrier functions that are essential
in supporting CNS homeostasis. The nonbarrier func-
tions include regulating the transport of circulating
substances into the brain, removing potentially harmful
substances from the brain, secreting molecules that
signal to cells in the brain parenchyma, and responding
to stimuli that arise within both the brain and blood
compartments. In the remainder of this section, we will
provide an overview of the historical work that defined
the barrier functions of brain interfaces, discuss
aspects of their barrier and interface functions that
contribute to CNS homeostasis, and relate each
blood–brain interface to one another with regard to
their unique structures and functions in neuroim-
mune communication.

C. Historical Work: Defining the Brain Barriers

Evidence in support of a BBB dates back to works
published in the late 19th/early 20th century. At the
time, the field of medicinal chemistry was in its infancy,
and Paul Ehrlich, who would later make many seminal
contributions to the field (Bosch and Rosich, 2008), was
investigating the selectivity of dyes for different cells
and tissues. As part of this work, Ehrlich (1885) noted
that certain water-soluble dyes that were parenterally
injected into animals stained peripheral tissues and the
choroid plexus, but did not stain the brain or spinal cord
parenchyma. Ehrlich (1906) posited that the reduced
CNS staining was due to a low affinity of the dyes for
CNS tissue. However, other groups who were investi-
gating bile acids (Biedl and Kraus, 1898) and sodium
ferrocyanide (Lewandowski, 1900) found that the toxic-
ities of these substances were much more potent when
introduced directly into the cerebrospinal fluid versus
systemically. Both groups interpreted their findings to
mean that brain capillaries had unique properties that
blocked the transfer of certain molecules from blood to
brain. Goldmann (1909, 1913) later conducted critical
experiments showing that Ehrlich’s trypan blue dye,
which did not bind CNS tissue when injected parenter-
ally, did stain CNS tissue when injected into the CSF.
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This finding demonstrated that exclusion of trypan blue
from the CNS was not due to reduced binding affinity to
CNS tissue, which had been suggested by Ehrlich
(1906). However, Goldmann (1913) supposed in this
work that the choroid plexus was the predominant
barrier site of the CNS, supplying nutrients to the
CNS in a fashion analogous to the placenta. The term
BBB (barrière hémato-encéphalique) was first used in a
publication by Stern andGautier (1921); althoughmany
attribute the first use of this term (Blut-Hirnschranke)
to Lewandowski, this term was not used in his original
publication (Saunders et al., 2014).
Following these early studies, controversy sur-

rounded the true nature of the BBB. Early ultrastruc-
tural studies of the brain using electron microscopy
used methods of tissue preservation that led to the
belief that the CNS had essentially no extracellular
space (Bradbury, 2000). Therefore, some adopted the
belief that the limited CNS penetration of aqueous
solutes was due to tightly packed neuronal and glial
membranes and a lack of aqueous medium for diffusion
(Davson and Spaziani, 1959; Bradbury, 2000). However,
it was then demonstrated that extracellular markers
injected in ventricular CSF did penetrate the brain and
spinal cord, and therefore, CNS tissue contained extra-
cellular fluid permissive to solute diffusion (Davson and
Segal, 1969). Based on these findings, it was posited
that a BBB to such solutes injected in blood must exist
(Davson et al., 1961). Later that decade, Vanharreveld
et al. (1965) showed that the brain extracellular space
could be visualized by electron microscopy when mod-
ified techniques were used for tissue preservation. This
report was followed by the eminent findings of Reese
and Karnovsky (1967), who used electron microscopy to
explore the subcellular features of brain capillaries.
They found that the brain’s limited uptake of peroxi-
dase, which had been shown previously (Straus, 1958),
could be attributed to two specialized features of the
brain endothelium: uniquely impermeant tight junc-
tions (TJs) that were present at contacts between
capillary membranes, and markedly reduced endothe-
lial vesicles (Reese and Karnovsky, 1967). In a later
study, Brightman and Reese (1969) explored the distri-
bution of peroxidase injected into CSF of mice, chickens,
and goldfish to determine which cell types of the CNS
expressed peroxidase-impermeant TJs. Although per-
oxidase did diffuse through gap junctions that were
present at contacts of astrocytic endfeet, it did not
permeate the junctions between brain endothelial cells
(BECs) or choroid plexus ependymal cells. This work
highlighted that TJs were a unique feature of BECs, as
well as epithelial cells of the choroid plexus that
conferred barrier properties (Brightman and Reese,
1969). The tight barriers of the brain vasculature were
further exemplified by Crone and Olesen (1982) and by
Butt et al. (1990), who showed that brain vessels have
exceptionally low ion permeabilities due to very high

transendothelial electrical resistance (TEER), averaging
over 1000 V/cm2 in frog and mammalian pial vessels. As
pial vessels lack astrocytes, TEER is estimated to be
much higher in brain parenchymal vessels that are
ensheathed by astrocyte endfeet, which contribute to
the BBB phenotype (Abbott et al., 2006). By determining
the CNS permeability/surface area coefficients for K, Na,
and Cl in vivo, Smith and Rapoport (1986) estimated
TEER of the parenchymal vessels to be approximately
8000 V/cm2, which compares to that of a cell membrane.

II. Features and Functions of the Blood–Brain
Barrier and Blood–Brain Interface

A. Specialized Features That Confer
Barrier Functions

Barrier functions are largely thought of as those
related to the exclusion of blood-borne substances from
the brain. Such exclusion is critical to the CNS being an
immune-privileged tissue. The specialized features that
underlie those functions include TJs, mechanisms that
limit macropinocytosis, efflux mechanisms, and enzy-
matic activities.

1. Tight Junctions. TJs are macromolecular com-
plexes that prevent the paracellular diffusion of solutes
across brain barriers. They communicate with adherens
junctions (AJs), which are another junctional complex
that contributes to the tightness of the barrier (Wolburg
and Lippoldt, 2002). AJs are located at the basal
membrane and are comprised of cadherins, which
associate with each other in the extracellular space,
and catenins, which link the cadherins to the cytoskel-
eton (Huber et al., 2001). TJ proteins at the vascular
BBB include occludin, claudins, junctional adhesion
molecules (JAMs), zonula occludens (ZO), and cytoplas-
mic accessory proteins such as cingulin (Hawkins and
Davis, 2005). Occludins, claudins, and JAMs are
membrane-spanning proteins that heterotypically in-
teract in the intercellular space between adjacent
capillary membranes. ZOs and cingulin are adaptor
proteins that link TJ membrane proteins to the cyto-
skeleton and contribute to junction stability (Abbott
et al., 2010). TJ stability is regulated by calcium,
phosphorylation, cyclic AMP, and G proteins (Huber
et al., 2001), and decreases in TJ expression as well as
TJ mislocalization and post-translational modifications
can cause increases in paracellular permeability of
solutes across the BBB (Deli et al., 2005). Importantly,
TJs are not only a diffusion barrier for transcellular
passage of circulating substances into the CNS, but also
for the lateral diffusion of membrane proteins (Abbott
et al., 2010). Therefore, TJs also contribute to the
membrane polarity of BECs. Later in this review, we
will compare TJ organization in the different arms of
the BBB as well as the contributions of TJs to the
neuroimmune axes of the BBB.
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2. Reduced Macropinocytosis. Reese and Karnovsky
(1967) were the first to note that BECs had relatively
low numbers of vesicles compared with endothelial cells
in the periphery. In contrast, epithelial cells of the
choroid plexus do have vesicles that largely reside at
their apical membranes (Johanson et al., 2011). Recent
work has begun to identify the molecular mechanisms
that suppress brain endothelial pinocytic vesicle forma-
tion. In a study that aimed to characterize gestational
development of the BBB, Ben-Zvi et al. (2014) found
that the BBB tightening that occurred around E15.5 in
mice was associated with upregulation of major facili-
tator superfamily domain-containing 2A (MFSD2A) in
BECs. In the same study, it was shown that MFSD2A
knockout mice had a leaky BBB, although the morphol-
ogy of the brain vasculature and TJs did not appear to
be affected. Instead, MFSD2A knockout mice had in-
creased luminal, abluminal, and cytoplasmic vesicles in
their BECs, which facilitated the fluid-phase uptake of
solutes such as peroxidase and dextrans, which are
usually excluded from the CNS. In a parallel study, it
was realized thatMFSD2A knockoutmice had cognitive
and behavioral symptoms that resembled omega-3
fatty-acid deficiency (Nguyen et al., 2014). Using a
lipidomics approach, this group revealed that docosa-
hexaenoic acid (DHA), an omega-3 fatty acid that is
important for CNS development and cognition, was
reduced in the CNS of mice lacking MFSD2A. They
further demonstrated that MFSD2A was a transporter
for lysophosphatidylcholine (LPC)-DHA, as well as
LPC-oleate and LPC-palmitate at slightly lower capac-
ities (Nguyen et al., 2014). Andreone et al. (2017) then
showed that the DHA-transporting function of
MFSD2A also facilitated DHA enrichment of BEC
membranes, which inhibited caveolin-1–induced forma-
tion of vesicles. In mice lacking MFSD2A, caveolin-1
knockout inhibited the increased formation of brain
endothelial vesicles as well as leakage of the BBB
(Andreone et al., 2017). Therefore, BECs acquire a
specialized lipid composition during embryonic devel-
opment that inhibits caveolae-mediated fluid-phase
transcytosis.
3. Efflux Transporters. Efflux transporters at brain

barriers facilitate the passage of substances in the
brain-to-blood or CSF-to-blood direction. A subset of
efflux transporters, namely members of the ATP-
binding cassette (ABC) protein family, confers barrier
functions by limiting the brain uptake of endogenous
macromolecules and xenobiotics. ABC transporter sub-
types, their localization, and functions in the CNS have
been extensively reviewed elsewhere (Hartz and Bauer,
2011). Some of the most studied ABC transporters at
the BBB include P-glycoprotein (Pgp/ABCB1), multi-
drug resistance protein (MRPs/ABCC), and breast
cancer resistance protein (BCRP/ABCG2) (Qosa et al.,
2015). ABC transporters have a broad substrate spec-
trum, including some phospholipids, sphingolipids,

aldosterone, and amyloid b (Ab) for Pgp; glutathione,
glutathione-conjugated leukotrienes and prostaglandins,
and glucoronidation and sulfation products for MRP-1;
and bile acids and estrones for BCRP (Qosa et al., 2015).
ABC transporters also efflux a broad range of xenobiotic
substrates, including opioids, antibiotics, antiretroviral
drugs, chemotherapeutics, and others (Qosa et al., 2015).
The expression and function of efflux transporters at the
BBB are dynamically regulated, for example, at the
transcriptional level by nuclear receptors (Chan et al.,
2013), and at post-translational levels by vascular endo-
thelial growth factor (VEGF) (Hawkins et al., 2010).
Aspects of ABC transporter modulation regarding
immune-regulated functions are discussed in greater
detail later in this review.

4. Metabolic Enzymes. The BBB is also an enzy-
matic barrier, and expresses phase I and phase II
enzymes that contribute to the metabolism and elimi-
nation of biomolecules and drugs from the body. BECs
contain monoamine oxidase and catechol-O-
methyltransferase, which metabolize adrenaline, nor-
adrenaline, and dopamine, as well as 4-aminobutyrate
aminotransferase, which metabolizes GABA (Lasbennes
et al., 1983; Spatz et al., 1986). Therefore, enzymatic
barriers inhibit the transport of many neurotransmit-
ters in the blood-to-brain and brain-to-blood directions.
Furthermore, the toxicity of 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine when systemically administered is
inversely associated with monoamine oxidase expres-
sion in BECs (Kalaria et al., 1987; Riachi and Harik,
1988). The cytochrome P450 enzyme CYP1B1 is
expressed in human BECs (Dauchy et al., 2008;
Shawahna et al., 2011), and its expression can be
regulated by environmental toxicants such as
2,3,7,8-tetrachlorodibenzo-p-dioxin through the aryl
hydrocarbon receptor (Jacob et al., 2015). Glutathione
S-transferases are also expressed in human brain
capillaries (Shawahna et al., 2011).

B. Specialized Features That Confer
Interface Functions

Brain barriers do much more than divide the CNS
from the peripheral circulation. They are also critical in
CNS homeostasis, nutrition, and brain–body communi-
cation. These features are essential to the existence of
some of the neuroimmune axes. Features that aid in
these functions include transcellular diffusion and
transport via solute carriers, receptor-mediated trans-
cytosis, and adsorptive endocytosis.

1. Transcellular Diffusion. Early work by Davson
demonstrated that lipid solubility and size determined
partitioning of substances from blood into CSF and
brain tissue (Davson, 1955; Davson and Smith, 1957). It
is now appreciated that small, lipophilic molecules can
cross the BBB by passive transmembrane diffusion.
Passive transmembrane diffusion is a nonsaturable
mechanism by which most drugs that can enter the
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CNSdo so. The degree to which lipid-soluble compounds
may cross the BBB is often determined by their
partitioning into aqueous versus nonpolar medium,
such as water and octanol (Oldendorf, 1974; Levin,
1980). However, as substances that passively diffuse
across the BBB must traverse the luminal membrane,
cytosol, and then the abluminal membrane prior to
reaching the CNS, there is a limit to the lipophilicity of a
substance that favors diffusion across the BBB versus
sequestration within the cell membrane (Banks, 2016).
Transcellular diffusion of substances across the BBB is
also affected when the test substance is an efflux
transporter substrate. In this case, CNS uptake is much
lower than what would be predicted based on size and
lipophilicity.
2. Blood–Brain Barrier Transport via Solute

Carriers. Solute carrier proteins are integral mem-
brane proteins that permit the directional or facilitated
diffusion of aqueous molecules across cell membranes.
The initial studies that identified carrier-mediated
transporters at the BBB investigated nutritional sub-
strates of the brain. D-glucose was the first substance
demonstrated to have a saturable transport system
(Crone, 1965). In this study, Crone used an indicator
diffusion technique (IDT) to quantify first-pass uptake
of glucose by the brain. The IDT involves coinjecting a
radioactive test substance and a capillary-impermeant
tracer (e.g., Evan’s blue albumin), which estimates the
dilution of the injected substance in blood. The sub-
stances are injected into the carotid artery, and then
venous blood from the superior sagittal sinus is imme-
diately sampled to determine the percent loss of injected
substance. Crone used the IDT to assess the brain
uptake of D-glucose during hypo- and hyperglycemic
states, and found that CNS uptake of the glucose tracer
was highest when blood glucose was low, and lowest
when blood glucose was high, indicating that glucose
used a saturable transport system (Crone, 1965). Sub-
sequently, Oldendorf (1971) used a different technique
to assess the brain uptake of glucose and amino acids.
The method, called the brain uptake index (BUI), is
carried out by coinjecting a highly brain-penetrant
radioactive standard along with a radioactive test sub-
stance into the carotid artery, and then immediately
removing and counting brain tissue for uptake of the
test substance with reference to the standard. The BUI
is therefore also a first-pass measurement of brain
uptake. In support of the findings by Crone (1965),
Oldendorf’s BUI method also demonstrated saturable
transport of glucose, as well as amino acids. Impor-
tantly, Oldendorf (1971) also conducted cross-inhibition
studies and found that amino acids with similar chem-
ical properties often used a common transporter. It is
now understood that there are three broad classes of
amino acid transporters with many subtypes in each
class (Hawkins et al., 2006; Abbott et al., 2010). Glucose
transport across the BBB is mediated by GLUT1 (Dick

et al., 1984; Pardridge et al., 1990; Boado and Par-
dridge, 1994), andGLUT1 expression is considered to be
a hallmark of BBB endothelial cells (Cornford et al.,
1993, 1994), as its expression is absent from endothelial
cells within brain regions that lack an endothelial BBB
(Rahner-Welsch et al., 1995). In addition to glucose and
amino acids, solute carriers transport nucleosides, ions,
prostaglandins, and many other small polar molecules
(Bito et al., 1976; Abbott et al., 2010). Therefore, one
function of solute carriers is to provide the brain with
the essential circulating substrates for energy genera-
tion, protein and nucleic acid synthesis, and mainte-
nance of pH and electrolytes. At the choroid plexus
epithelium, solute carriers are necessary for the pro-
duction of CSF from plasma ultrafiltrate (Johanson
et al., 2011). Solute carrier proteins may be present on
the luminal and/or abluminal membrane of brain
endothelial and epithelial barrier cells, and the di-
rectionality of their transport may be in the blood-to-
brain or brain-to-blood direction, depending on their
orientation within the membrane (Abbott et al., 2010).

3. Blood–Brain Barrier Transport via Receptor-
Mediated Transcytosis. Another mechanism of trans-
port across the BBB is receptor-mediated transcytosis
(RMT), which is thought to be the predominant mode of
transport of larger macromolecules such as peptides
and proteins across the BBB (Bickel et al., 2001). RMT
is energy dependent, saturable, and depends on vesic-
ular pathways. RMT may be in the blood-to-brain
direction, or brain-to-blood direction. For ligands to
completely cross the BBB via RMT, they must first bind
their transporter at either the luminal or abluminal
endothelial membrane. Second, they must be internal-
ized in a vesicle, which may be clathrin or cavaeolae
dependent (Georgieva et al., 2014). Third, they must be
routed from the luminal to abluminal membrane or
vice versa, which may involve subcellular trafficking
through organelles such as endosomes, or the Golgi
(Bickel et al., 2001). Furthermore, ligands must escape
vesicular routing to and degradation by the lysosome.
Ligands may become dissociated from their receptors
during subcellular routing, due to the slightly acidic pH
of the endosome (Bickel et al., 2001). Fourth, the ligand
must be exocytosed to the opposite side of the mem-
brane and released into brain interstitial fluid (Bickel
et al., 2001). This final step also requires the dissocia-
tion of the ligand from its transporter. RMT at the BBB
can be regulated at the level of transporter expression,
localization, and conformation, as well as by concentra-
tions of other molecules that might compete with the
ligand for transport, or that may sequester the ligand
from interacting with its transporter at the BBB.

4. Blood–Brain Barrier Transport via Adsorptive
Transcytosis. Adsorptive endocytosis is a receptor-
independent mode of vesicular transport across the
BBB and involves interactions of cationic protein
residues with the anionic glycocalyx, which lines the
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lumial surface of endothelial cells, or membrane glyco-
proteins (Broadwell et al., 1988; Villegas and Broad-
well, 1993). Conferring a positive charge to proteins that
typically do not cross the BBB, such as albumin (Griffin
and Giffels, 1982; Kumagai et al., 1987), enhances their
uptake by BECs by adsorptive mechanisms. Adsorptive
endocytosis may be saturable (Kumagai et al., 1987),
but may also be induced by compounds such as wheat
germ agglutinin and the human immunodeficiency
virus (HIV) coat proteins TAT and gp120 (Mann and
Frankel, 1991; Banks et al., 1998a). Adsorptive endo-
cytosis increases in vitro following lipopolysaccharide
(LPS) or cytokine treatment (Schenk and de Vries,
2016).

C. From Brain Barriers to Brain Interfaces:
Components of the Neurovascular Unit

Brain barriers are uniquely poised to communicate
signals between the CNS and peripheral compart-
ments. Communication is not only achieved through
transporters, but also frommolecules that are produced
and secreted by cells of the brain interfaces. These
secreted substances can engage autocrine targets,
and/or signal to other cells of the neurovascular unit
(NVU), and distal cells in the brain and periphery. BBB
secretions may be constitutive or inducible, and are also
polarized in that they may be released into either blood
or brain compartments (Banks, 2016). Finally, cells of
the BBB respond to signals that arise from the CNS or
blood compartments, which may stimulate alterations
in their barrier, transport, and secretory functions
(Verma et al., 2006; Krasnow et al., 2017). How these
interface functions contribute to the neuroimmunomo-
dulatory activities of brain barriers will be discussed in
section II of this review. First, we consider the individ-
ual components and their functions (Fig. 1).
1. Endothelial Cells. In addition to their barrier,

transport, and interface functions, BECs contribute to
the specialized phenotypes of other cells of the NVU.
Endothelial cells induce astrocyte differentiation in
vitro via leukemia-inhibitory factor production (Mi
et al., 2001). They influence the localization of the water
channel aquaporin 4 on the plasma membrane of
astrocyte endfeet and stimulate the upregulation of
antioxidant enzymes within astrocytes (Abbott, 2002).
Endothelial cells secrete factors such as transforming
growth factor (TGF)-b and platelet-derived growth
factor subunit B (PDGF-B) and signal through Tie2
and sphingosine-1 phosphate, which maintain pericyte
functions (Armulik et al., 2005). Neuroimmune func-
tions of BECs are discussed extensively in later
sections.
2. Brain Pericytes. Pericytes have important func-

tions in the development and maintenance of the
vascular BBB. Of the cells of the NVU, pericytes are
the most closely apposed to capillary endothelial cells;
they share a basement membrane and make direct

contact with BECs via peg and socket as well as gap
junctions (Dore-Duffy and Cleary, 2011). Brain peri-
cytes are derived from the mesoderm and neuroecto-
derm (Winkler et al., 2011) and undergo proliferative
expansion and recruitment to the developing neuro-
vasculature during embryonic development and the
early postnatal period (Daneman et al., 2010). Pericyte
attachment to BECs during embryonic development
facilitates BBB tightening by downregulating genes
that are associated with pinocytic vesicle formation
and immune cell recruitment (Daneman et al., 2010;
Ben-Zvi et al., 2014). PDGF-B produced by brain
capillaries signals to platelet-derived growth factor
receptor b (PDGFRb) on brain pericytes and regulates
pericyte proliferation, attachment to endothelial cells,
and survival. The absence of PDGF-B or PDGFRb is
lethal in mice (Leveen et al., 1994; Kaminski et al.,
2001), whereas mice with partial PDGF-B or PDGFRb
deficiency survive into adulthood, but have reductions
in capillary-associated pericytes (Armulik et al., 2010;
Bell et al., 2010; Daneman et al., 2010). Pericyte
deficiency induced by a PDGF-B mutation results in
leakage of intravascular markers of different sizes into
the CNS, indicative of BBB disruption. Astrocyte
associations with capillaries were also altered in this
model; however, TJ protein expression and localization
were relatively unaffected (Armulik et al., 2010). Mice
lacking one copy of PDGFRb have an age-dependent
loss in pericytes of about 20% by 1 month of age, and
60% by 14–16months (Bell et al., 2010). BBB disruption
is evident by 1 month and worsens with age. In this
model, synaptic deficits and impaired learning and

Fig. 1. The neurovascular unit. The BBB is in contact and communicates
with other cells of the CNS as well as circulating immune cells and
peripheral tissues through the endocrine-like secretions of the latter.
Differences occur in NVU function regionally as well as among the
anatomic areas in which barrier cells are located. As an example of the
latter, immune cell trafficking occurs largely at the postcapillary venule.
Endothelial cells, astrocyes, pericytes, neurons, and macrophages/micro-
glia, as well as the extracellular matrix and glycocalyx are part of the
NVU. There is renewed interest in mast cell functions, and the cellulis
incompertus represents cell types yet to be discovered that participate in
the NVU. Not drawn to scale.
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memory are evident by 6–8 months, but precede neuro-
inflammation, which does not significantly increase
until 14–16 months of age. Pericytes are also important
for the induction of the BBB phenotype in vitro, as
pericyte coculture with BECs increases the integrity of
the barrier (Nakagawa et al., 2007).
Pericytes also have dynamic functions in the NVU.

Pericytes are multipotent stem cells that can differen-
tiate into cells of neural lineage (Dore-Duffy et al.,
2006). Theymay also adopt a contractile phenotype that
contributes to the regulation of cerebral blood flow (Hall
et al., 2014). Pericytes contribute to the neuroimmune
response and are potent modulators of BBB function
due to their proximity to endothelial cells. Pericytes
secrete cytokines and chemokines constitutively in
culture and upregulate cytokine and nitric oxide pro-
duction in response to LPS (Fabry et al., 1993; Kovac
et al., 2011). They present antigen in response to
interferon (IFN)-g, which may contribute to T-cell
activation (Balabanov et al., 1999). They also enhance
the transcytosis of HIV-1 free virus and neutrophils
across in vitro BEC monolayers in the presence of an
immune stimulus (Dohgu and Banks, 2013; Pieper
et al., 2013). In response to injuries that are associated
with neuroinflammation such as hypoxia (Gonul et al.,
2002) and traumatic brain injury (Dore-Duffy et al.,
2000), pericytes dissociate from the brain vasculature
and migrate away from the vessels within 1–2 hours
following the insult (Dore-Duffy et al., 2000; Gonul
et al., 2002). In contrast, a systemic inflammatory insult
such as intraperitoneal LPS results in pericyte de-
tachment from thebasal lamina between6and24hours,
which coincides with reactive microgliosis and BBB
disruption (Nishioku et al., 2009). Pericytes that leave
the basement membrane and enter brain parenchyma
have been reported to adopt a phenotype similar to that
of infiltrating macrophages (Guillemin and Brew,
2004). In summary, pericytes may contribute to the
neuroimmune response as follows: 1) causing a leaky
BBB, either by secreting endothelial-disrupting factors,
or by physical disassociation; 2) facilitating the trans-
port of immune cells and pathogens into the brain; and
3) propagating neuroinflammation by stimulating both
resident and recruited immune cells.
3. Astrocytes. Astrocytes are the most abundant

brain cell type and regulate a number of physiologic
processes in the CNS that include neurotransmission,
synaptic plasticity, functional hyperemia, and convec-
tive flow of brain interstitial fluid (Sofroniew and
Vinters, 2010). Astrocytes are also integral in the
induction and maintenance of the mature BBB pheno-
type (Abbott et al., 2006). Their endfeet surround brain
capillaries, arterioles, and venules. At capillaries, the
astrocytic endfeet are located on the CNS side of the
basement membrane that ensheaths the endothelial
cells and pericytes (Abbott et al., 2006). These endfeet
are in close proximity to the endothelial cells (Thal,

2009) and therefore positioned for crosstalk that pro-
motes the phenotypic specialization of both cell types.
The contribution of astrocytes to BBB formation during
embryonic development is thought to be negligible in
rodents, as astrocytes appear immediately after birth
and do not begin to ensheath brain vessels until the first
postnatal week (Daneman et al., 2010). In contrast,
radial glia, which are precursors for neurons and
astrocytes, do form endfeet around capillaries in fetal
baboons and humans (Bass et al., 1992; Bertossi et al.,
1999). Therefore, theremay be species differences in the
contribution of astrocytes or their precursors to the
embryonic BBB. Astrocytes do contribute to BBB
functions during postnatal development and through-
out adulthood. In vitro, astrocytes strengthen the
barrier properties of BECs and also enhance expression
of BBB transporters, such as Pgp and Glut1, and
enzymes of the metabolic barrier (Abbott et al., 2006).
The close proximity of astrocytes and endothelial cells
at capillaries likely favors BBB tightening, as in vitro
studies have demonstrated that in vitro BEC barriers
are tightest when astrocytic processes contact the
endothelial monolayer (Abbott, 2002). However, se-
creted factors from astrocytes also contribute to the
BBB phenotype. BECs likewise contribute to the orga-
nization of aquaporin 4 and potassium channels on
astrocytic endfeet (Abbott, 2002), which regulate water
and ion exchange in the CNS (Stokum et al., 2015).
Therefore, communication between endothelial cells
and astrocytes is important for both the barrier and
interface functions of BECs.

Astrocytes are immune-active cells and were the first
cell type in the CNS shown to express class II major
histocompatibility complex upon IFN-g stimulation
in vitro (Wong et al., 1984). More recent work has
reviewed aspects of astrocyte responses to systemic
inflammation; additionally, CNS injury in the context
of novel subsets of reactive astrocytes and their func-
tions are beginning to be characterized (Liddelow and
Barres, 2017). In response to systemic inflammatory
insults such as sepsis, astrocytes upregulate their pro-
duction of proinflammatory cytokines and chemokines,
as well as VEGF (Bellaver et al., 2017). Inflammatory
lesions and interleukin (IL)-1b can induce astrocyte
production of VEGF-A and thymidine phosphorylase,
which downregulate TJ protein expression in BECs
(Chapouly et al., 2015). Astrocytes also upregulate
cytokines and chemokines in response to proinflamma-
tory stimuli and in disease states (Dong andBenveniste,
2001; Norden et al., 2016). Astrocytic inflammatory
responses are differently regulated in comparison with
those of microglia; for example, astrogliosis following
induction of systemic inflammation is inhibited by
indomethacin, whereas microgliosis is not (Banks
et al., 2015). Furthermore, in response to a systemic
inflammatory insult, astrocytes adopt a delayed proin-
flammatory phenotype in comparison with that of
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microglia (Norden et al., 2016). Astrocytes may also
function in the resolution of neuroinflammation, as they
can downregulate microglial activation by secreting
TGF-b (Vincent et al., 1997).
4. Neurons. The brain is extensively vascularized—

the mean distance of a neuronal cell body to a capillary
is approximately 15 mm in mice (Tsai et al., 2009) and
30 mM in nonhuman primates (Mabuchi et al., 2005).
Therefore, each neuron receives and can regulate its
own blood supply from an adjacent capillary. Neurons
regulate their blood supply through communication
with astrocytes, which facilitate dilation of arterioles
in response to neuronal glutamate release (Zonta et al.,
2003). Some studies suggest that capillary pericytes
contribute to functional hyperemia; however, the rela-
tive contribution of pericytes versus mural cells of
arterioles to neurovascular coupling has been disputed
(Fernandez-Klett et al., 2010; Winkler et al., 2011;
Fernandez-Klett and Priller, 2015). Neuronal activity
also contributes to the NVU architecture by promoting
neurovascular density and branching during adulthood
(Lacoste et al., 2014), but, during neonatal develop-
ment, excessive sensorimotor stimulation and repeti-
tive neural activation result in reduced microvascular
density (Whiteus et al., 2014).
Neurons exhibit pleiotropic responses to inflamma-

tory stimuli. Cytokines such as tumor necrosis factor
(TNF)-a, via its interaction with astrocytes, and frac-
talkine, which is expressed by neurons and activates the
microglia fractalkine receptor, can both stimulate syn-
aptic activity (Prieto and Cotman, 2017). Furthermore,
cytokines such as IL-1b, IL-6, and IL-18 are upregu-
lated in the brain following long-term potentiation
(LTP) induction in awake rats (del Rey et al., 2013).
IL-1b at physiologic concentrations promotes LTP, but
at higher concentrations can inhibit LTP and impair
learning and memory (Ross et al., 2003; Prieto et al.,
2015). This function of IL-1b may be potentiated with
aging (Prieto et al., 2015). TNF-a is not required for
learning andmemory, but its overexpression by glia can
impair memory and synaptic plasticity (Donzis and
Tronson, 2014).
5. Microglia and Perivascular Macrophages.

Microglia are resident macrophages of the CNS and
rapidly respond to CNS insults. Their lineage is unique
from recruited brain macrophages, in that microglia
derive from the yolk sac during development, whereas
recruited brain macrophages derive from bone marrow
(Alliot et al., 1999). During development, microglia
associate with the brain vasculature and contribute to
angiogenesis (Arnold and Betsholtz, 2013). In adult
brains, microglia remain closely associated with the
neurovasculature. Their production of proinflammatory
mediators such as cytokines, chemokines, nitric oxide,
prostaglandins, matrix proteases, and reactive oxygen
species can have profound effects on cells of the NVU
and BBB integrity (da Fonseca et al., 2014). There are

also populations of brainmacrophages that reside in the
perivascular space and are thought to derive from bone
marrow (Hickey and Kimura, 1988), although more
recent works suggest that their recruitment to the brain
under physiologic conditions is rare (Prinz et al., 2011).
The perivascular macrophages are thought to protect
the brain during infection (Polfliet et al., 2001) and
prevent deposition of protein aggregates such as Ab
peptide within the perivascular space (Lai and
McLaurin, 2012). However, perivascular macrophages
may also contribute to neurovascular pathologies asso-
ciated with increases in Ab peptide levels in the brain
(Park et al., 2017). An important protective function of
microglia is their ability to rapidly migrate to sites of
brain injury and alter their morphology to form a
specialized phagocytic network that prevents diffusion
of harmful substances into the brain parenchyma (Roth
et al., 2014). Microglia also contribute to the resolution
of inflammation in the brain after injury (Cherry et al.,
2014).

6. Mast Cells. Mast cells are granulocytes that
originate from bone marrow and circulate as precursor
cells. Upon recruitment to tissues, mast cells complete
their differentiation according to their local environ-
ment (Silver and Curley, 2013). Mast cells can be
recruited to the CNS (Silverman et al., 2000; Nautiyal
et al., 2011), where they reside in perivascular spaces of
some brain regions, as well as in the choroid plexus and
meninges (Silver and Curley, 2013). Mast cells are
important mediators of peripheral IgE-mediated aller-
gic responses; however, they also have emerging func-
tions in the CNS. Granules of mast cells contain
bioactive mediators that include histamine, serotonin,
serine proteases, and heparin. Mast cells can also
synthesize prostaglandins, cytokines, growth factors
such as nerve growth factor, reactive oxygen species,
and substance P in response to stimuli (Silver and
Curley, 2013). Therefore, mast cells likely play impor-
tant roles in regulating neurotransmission as well as
BBB function. Induction of mast cell degranulation
causes BBB disruption that is localized to brain regions
enriched in mast cells, such as the medial habenula in
doves (Zhuang et al., 1996). Mast cells are thought to
contribute to CNS dysfunction in conditions such as
stress (Theoharides et al., 1995), postoperative cogni-
tive dysfunction (Zhang et al., 2016), and rodent models
of multiple sclerosis (Costanza et al., 2012). However,
mast cells may also regulate physiologic aspects of
behavior, as mice that lack functional mast cells in the
CNS display increased anxiety-like behaviors (Nautiyal
et al., 2008). Mast cells are also a predominant source of
brain histamine (Goldschmidt et al., 1985). Serotonin
derived from mast cells has been implicated in pro-
moting hippocampal neurogenesis and learning and
memory (Nautiyal et al., 2012).

7. Extracellular Matrix. Within the NVU, basement
membranes composed of extracellular matrix (ECM)
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are present between endothelial cells and pericytes,
and also along the astrocytic endfeet (McConnell
et al., 2017). Microvascular basement membranes are
composed of laminins, collagen IV, fibronectin, glycos-
aminoglycans including hyaluronan, chondroitin
sulfate-rich proteoglycans, and glycoproteins that con-
tribute to the resiliency of the microvasculature (del
Zoppo and Mabuchi, 2003; Lennon and Singleton, 2011;
Reed et al., 2017). The ECM functions as a cellular
scaffold that is generated during development, and
endothelial adhesion to the matrix is mediated by
integrins (del Zoppo and Mabuchi, 2003). Integrins are
unique receptors that can respond to and relay both
intracellular and extracellular signals (Shen et al.,
2012). Blocking the function of b1 integrin in BECs
reduces the expression of the TJ protein claudin 5 and
causes BBB disruption (Osada et al., 2011). The ECM is
also a barrier to leukocyte and erythrocyte entry into
brain parenchyma during inflammation and hemor-
rhage (del Zoppo and Mabuchi, 2003; del Zoppo, 2009).
Components of the ECM can be degraded by matrix
metalloproteinases (MMPs), which contribute to BBB
disruption and leukocyte trafficking during neuroin-
flammation (Rosenberg, 2002). MMPs and their modu-
latory effects on the BBB have recently been reviewed
elsewhere (Rempe et al., 2016). Hyaluronan and its
fragments bind to Toll-like receptors, influencing the
neuroimmune environment (Jiang et al., 2011).
8. Glycocalyx. The glycocalyx lines the luminal

surface of endothelial cells, including those of the brain.
It is a gel-like layer estimated to be approximately 5 mm
thick, and is predominantly composed of heparin sulfate
proteoglycan, chondroitin sulfate, hyaluronan, and gly-
coproteins (Kolá�rová et al., 2014). The glycocalyx begins
to form during brain neovascularization during early
embryonic development and matures postnatally
(Vorbrodt et al., 1990). The glycocalyx has important
barrier functions in preventing direct exposure of
plasma components to the endothelial luminal mem-
brane surface (Vorbrodt, 1989), and it also functions as a
mechanosensor and relays signals of sheer stress to the
endothelium (Tarbell, 2010). Degradation of the glyco-
calyx occurs during inflammation, which is associated
with increased passage of solutes across the endothelial
barrier, and increased leukocyte adhesion to the endo-
thelium (Kolá�rová et al., 2014; Varatharaj and Galea,
2017).

D. Arms of the Blood–Brain Barrier and Their
Neuroimmune Functions

The barriers formed by the components above and the
resulting mechanisms by which they form neuroim-
mune axes can be categorized into three main arms: the
vascular BBB, the choroid plexus, and the tanycytic
barrier. The unique cellular and anatomic features of
these barriers with reference to their neuroimmune
functions are discussed below.

1. The Vascular Blood–Brain Barrier. The vascular
BBB is a broadly applied term that most often refers to
the capillaries within the brain parenchyma. However,
vascular BBBs extend to pre-and postcapillary arteri-
oles and venules, respectively (Bechmann et al., 2007).
Vascular BBBs are also present in the spinal cord,
retina, nerves, and the inner ear, and the structural and
functional organization of these has been reviewed
elsewhere (Choi and Kim, 2008). Brain capillaries
exhibit functional heterogeneity within different ana-
tomic locations, as certain brain regions are more
vulnerable to disruption during neuroinflammation
(Banks et al., 2015), and transport rates of immunoac-
tive substrates also vary depending on brain region
(Moinuddin et al., 2000; Banks et al., 2001c; Erickson
et al., 2014). Therefore, the heterogeneity of the vascu-
lar BBB imparts some anatomic specificity to the
neuroimmune response.

In brain capillaries, the perivascular space between
the endothelial/pericyte basement membrane and
astrocytic endfeet is small (Thal, 2009). The minimal
distance between capillary endothelial cells and the
brain parenchyma makes them ideally positioned for
secreting or transporting molecules into the CNS
(Bechmann et al., 2007). In contrast, precapillary
arterioles and postcapillary venules have a lamina
media, and the basement membranes of this layer and
astrocytic endfeet form a perivascular space (Thal,
2009). The brain CSF/ISF flows along this perivascular
space, which facilitates the clearance of solutes from the
brain parenchyma (Iliff et al., 2012). A subset of brain
macrophages also resides in perivascular spaces
(Bechmann et al., 2007), and these macrophages are
positioned to respond to antigens and endogenous
immune signals that are carried by the perivascular
bulk flow of CSF, as well as those that are transported
or secreted by the endothelium. Transmigration of
leukocytes across the vascular BBB occurs at postcapil-
lary venules (Owens et al., 2008). Some leukocytes that
cross the BBB reside in the perivascular space, whereas
others completely transmigrate across the glia limitans
and enter brain parenchyma (Bechmann et al., 2007).

BECs actively respond to immune stimuli and are an
active interface in neuroimmune communication.Mech-
anisms by which BECs contribute to neuroimmune axes
will be discussed in section II of this review.

2. The Blood–Cerebrospinal Fluid Barrier.
Epithelial cells of the choroid plexus are the primary
cellular components that predominantly comprise the
blood–CSF barrier/interface. Tanycytes (see below) and
the arachnoid membrane also interface with the CSF,
but are structurally and anatomically distinct from the
choroid plexus epithelium (CPE). The choroid plexus is
a specialized structure within all four brain ventricles.
Choroid plexuses extend from the ependymal lining of
the ventricles, and consist of a single layer of cuboidal
epithelial cells that reside on a basement membrane.
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CPE cells have microvilli and cilia on their apical
surface, which contacts the CSF (Damkier et al.,
2013). These apical projections provide a large surface
area for secretory activity, and also have functions in
regulating and sensing pH, osmolarity, and ion balance
in CSF (Damkier et al., 2013). The basal and lateral
membranes of CPE cells are relatively flat, except at
lateral membrane contacts near the basal end that
assume a folded labyrinth structure that is thought to
contribute to a paracellular diffusion barrier (Damkier
et al., 2013). A plexus of leaky blood vessels is located on
the basal side of the CPE cells. This vascular plexus is
devoid of astrocytes, and secretions of proteins such as
VEGF from the basal side of CPE cells may contribute to
the fenestrated vascular phenotype (Esser et al., 1998).
Leakage of blood components into the CSF is prevented
by the presence of TJs that are present in close
proximity to the apical surface of CPE cells (Johanson
et al., 2011). TJ proteins expressed by CPE cells include
claudins 1, 2, and 11. CPE TJs are thought to be more
leaky than those of the vascular BBB, and this has been
attributed to the presence of claudin-2, which can form
diffusive channels within the junction (Amasheh et al.,
2009; Rosenthal et al., 2010; Johanson et al., 2011).
However, the BCSFB is still relatively impermeable as
small molecules such as ascorbic acid and ions require
solute carriers for their passage into CSF (Johanson
et al., 2011).
The choroid plexus is themajor site of CSF production

in the brain. Humans produce about 500–600 ml CSF
per day, with approximately 80% of CSF being produced
by the choroid plexus and the remainder derived from
brain ISF (Damkier et al., 2013), as there is no barrier
that prevents mixing of brain ISF with brain CSF in the
adult (Ghersi-Egea et al., 1996). The CSF provides a
nutritive and homeostatic milieu for the brain and
circulates through the ventricular, subarachnoid, and
paravascular spaces in the CNS, as well as through
brain tissue, where it mixes with the brain ISF (Hladky
and Barrand, 2014). This flow pathway contributes to
the homeostatic milieu of the ISF and also acts as a sink
that prevents the localized buildup of solutes in the
parenchyma (Oldendorf and Davson, 1967; Johanson
et al., 2011). CSF exits the brain via arachnoid granu-
lations into venous sinuses and in spinal nerves, as well
as via perineural spaces that penetrate the cribriform
plate (Hladky and Barrand, 2014). CSF turns over in
the human brain approximately three times per day
(Damkier et al., 2013), which is governed by CSF
production, convective forces that facilitate bulk flow,
intracranial pressure, and patency of resorption sites
(Pollay, 2010). CPE cells express a variety of ion
transporters, solute carriers, and water channels that
contribute to CSF production by enabling passage of
water and solutes from the plasma ultrafiltrate across
the epithelium and into the ventricular space (Damkier
et al., 2013). CPE cells also express efflux transporters

that inhibit the buildup of potentially harmful sub-
stances in CSF. These include ABC transporters such as
MRP-1 (Gazzin et al., 2008) and Pgp (Pascale et al.,
2011), as well as monoamine transporters such as
SLC29A4, which facilitates histamine efflux from CSF
into blood (Usui et al., 2016), and the organic cation
transporter 3, which clears creatinine from CSF
(Tachikawa et al., 2008). CPE cells also express recep-
tors that have been implicated in transcytosis, includ-
ing low-density lipoprotein receptor-related protein-1
(LRP-1), -2, (LRP-2/megalin), and the receptor for
advanced glycation endproducts (RAGE) (Zlokovic
et al., 1996; Fujiyoshi et al., 2011; Pascale et al., 2011).

The choroid plexus is an immune-active tissue. It is a
site of leukocyte trafficking and immune surveillance
(Baruch and Schwartz, 2013; Schwartz and Baruch,
2014), and CPE cells upregulate their expression of
proinflammatory cytokines, c-fos, cell adhesion mole-
cules, and major histocompatibility complex antigens
following systemic inflammatory stimuli (Vallieres and
Rivest, 1997; Endo et al., 1998; Wolburg et al., 1999;
Engelhardt et al., 2001; Marques and Sousa, 2015).
Structural changes in CPE cells, such as swelling of the
apical microvilli, increases in numbers of dark, electron
dense epithelial cells, and altered mitochondria, occur
during inflammation (Engelhardt et al., 2001). Inflam-
mation also impairs CSF turnover (Erickson et al.,
2012b), which influences the clearance of solutes from
the CNS.

The arachnoid epithelium comprises another compo-
nent of the BCSFB. Arachnoid epithelial cells express
TJ proteins such as claudin 11 (Brochner et al., 2015)
and form a size-selective diffusion barrier in vitro (Lam
et al., 2012). Arachnoid epithelial cells also express high
levels of the efflux transporters Pgp and BCRP at their
apical membranes (Yasuda et al., 2013), which are
exposed to plasma ultrafiltrate from the leaky vessels
of the dura matter. Therefore, the activity of these
transporters would prevent the transport of substances
from blood into CSF in the subarachnoid space. BCRP
expression was also noted at the basal membrane of
arachnoid epithelial cells, suggesting that a second
function of BCRP is to facilitate the transport of
substances into CSF (Yasuda et al., 2013).

3. Tanycytic/Ependymal Barriers of Circumventric-
ular Organs. The CVOs of the brain are important
interfaces for humoral communication with the CNS.
Within CVOs, the brain capillaries are leaky, lack TJ
proteins, and are usually fenestrated, allowing for
communication of circulating molecules with resident
neurons and glia. The CVOs are generally classified as
those having sensory functions, which are the subforn-
ical organ, organum vasculosum of the lamina termi-
nalis (OVLT), and area postrema, and those having
secretory functions, which include the neurohypophy-
sis, median eminence (ME), and pineal gland (Miyata,
2015). The subcomissural organ is also considered a
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CVO, but its capillaries are not leaky and express TJ
proteins (Petrov et al., 1994; Langlet et al., 2013);
however, they lack GLUT1, which is typically expressed
in BBB capillaries (Rahner-Welsch et al., 1995). The
choroid plexus (CP) is also sometimes considered a
CVO, but has specialized properties in that the CP
has an epithelial barrier and is located within the brain
ventricles (Miyata, 2015). Neuronal and glial popula-
tions within sensory CVOs can detect and respond to
changes in circulating components such as electrolytes,
glucose, cytokines, and hormones. In the sensory CVOs,
neuronal cell bodies and dendrites are exposed to blood-
derived exudates from leaky capillaries, but project
their axons outside of the CVOs to brain regions
protected by a BBB (Rodriguez et al., 2010). In contrast,
secretory CVOs receive axonal projections from neuro-
nal cell bodies that are located outside of the CVO.
These axons release peptides into the bloodstream that
can signal to distal organs and elicit physiologic re-
sponses such as changes in blood pressure (Mimee et al.,
2013). Thus, the CVOs facilitate bidirectional commu-
nication between the brain and periphery and regulate
vital physiologic functions that include fluid balance,
metabolism, reproduction, and immune responses
(Ferguson, 2014).
Although serum components can freely diffuse into

and within CVOs, tanycytic barriers prevent their
diffusion into CSF and adjacent regions of the brain.
Tanycytes are specialized ependymal cells that differ-
entiate from radial glial cells beginning in the last few
days of prenatal development and continue to mature
postnatally (Edwards et al., 1990). Tanycytes are
morphologically distinct from cuboidal ependymal cells
that line the ventricles in that they lack cilia, and
instead have long, unipolar projections that are proxi-
mal to the fenestrated CVO capillaries (Rodriguez et al.,
2010). Tanycyte structure and functions have been best
characterized in the ME (Mullier et al., 2010; Rodriguez
et al., 2010), although their barrier functions appear to
be similar in other CVOs (Langlet et al., 2013). Four
types of ME tanycytes have been described, which
include a1, a2, b1, and b2. Barrier properties are
ascribed to the b1 and b2 tanycytes, which are located
at the lateral extensions and floor of the infundibular
recess, respectively (Rodriguez et al., 2010). The basal
processes of b1 tanycytes form bundles with axons that
define the boundary of the arcuate nucleus, which has
an intact BBB, and the ME (Rodriguez et al., 2010). TJs
and AJs are present between contacts of adjacent
tanycyte processes as well as the axons they surround,
and the anatomic location of these b1 projections
defines the diffusion barrier of i.v. injected substances
such as Evan’s blue dye between the ME and arcuate
nucleus (Rodriguez et al., 2010). In contrast, the b2
tanycytes express TJ proteins, including ZO-1, occludin,
claudin-1, and claudin-5 (Mullier et al., 2010), at their
apical contacts between cell bodies lining the ventricle

(Rodriguez et al., 2010). These junctions form a barrier
that prevents diffusion of blood components into the
CSF, and similar TJ organization of tanycytic blood–
CSF barriers has been characterized in the subfornical
organ, OVLT, and area postrema (Langlet et al., 2013).
Tanycytes of the ME also have important interface
functions. They are thought to participate in the regu-
lation of hypothalamic pathways that control energy
balance through glucose sensing and leptin transport
into CSF (Balland et al., 2014; Elizondo-Vega et al.,
2015).

The sensory CVOs are important interfaces for neuro-
immune communication. Neuroimmune functions of
CVOs were first demonstrated by the pioneering work
of Blatteis et al. (1983) in the 1980s, in context of the
febrile response, which was diminished by OVLT
ablation. It was later shown that cells within CVOs
rapidly upregulate proinflammatory cytokines follow-
ing systemic application of LPS, whereas the brain
parenchymal inflammatory response occurs as a second
wave (Quan et al., 1998). The localized inflammation in
CVOs may disrupt the tanycytic blood–CSF barrier, as
increased paracellular permeability between junctions
of tanycytes lining the third ventricle has been observed
in response to LPS (Liu et al., 1996).

III. The Neuroimmune Axes

A. Axis 1: Blood–Brain Barrier Disruption

Strictly speaking, disruption is usually considered a
pathologic condition. However, there is a perception
that, even under physiologic conditions, barrier func-
tion may slightly vary. As such, a role for neuroinflam-
mation in the physiologic regulation of barrier tightness
may emerge, and so this section is presented as a
neuroimmune axis. Furthermore, the term “disruption”
as it pertains to brain barriers is often not clearly
defined. In the strictest sense, disruption refers to loss
of barrier function resulting from loss of TJ function,
reinstitution of macropinocytosis or fenestrae, or
development of cannulae/vesiculo-tubular structures
(Lossinsky and Shivers, 2004), thus allowing leakage
of normally restricted substances, such as serum pro-
teins, across barrier cells. But it is often used much
more loosely to describe an alteration in endothelial or
epithelial function permitting leukocyte entry into
brain parenchyma, loss of Pgp function, or dysfunctions
resulting in some form of enhanced passage. Notably,
the latter are distinct but possibly interrelated molec-
ular processes. In this work, we will use “disruption” in
its strictest sense and explore inflammatory influences
on immune cell trafficking and Pgp function in separate
sections.

The experimental determination of BBB disruption
and the subsequent leakage under various neuroin-
flammatory states are often accomplished bymeasuring
the CNS entry of serum proteins or i.v. injected tracer,
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as well as assessment of TJ protein expression
(Saunders et al., 2015). In living humans, the CSF/se-
rum albumin ratio is also a common indicator used to
infer BBB leakage, and technical aspects of this ap-
proach and others that have been used to detect BBB
disruption in humans are critically appraised elsewhere
(Erickson and Banks, 2013). BBB leakage is observed in
diverse pathologic states in which distinct modes of
BBB disruption may be apparent. In this study, we
describe three mechanisms by which inflammatory
conditions may contribute to a leaky BBB (Fig. 2).
1. Disruption of Paracellular Tight Junctions.

BBB leakage between endothelial cell contacts can
occur when TJ proteins decrease in expression, misloc-
alize, or are posttranslationally modified (Luissint
et al., 2012). In many instances, inflammatory media-
tors can modulate TJ proteins and induce paracellular
BBB leakage. For example, an injection into brain
parenchyma of IL-1b results in the loss of occludin
and ZO-1 expression at endothelial cells, which coin-
cides with paracellular leakage of an intravascular
tracer and neutrophil recruitment to vessels where
TJs are absent (Bolton et al., 1998). TGF-b1, which
plays classic roles in the resolution of inflammation,
also increases tyrosine phosphorylation of VE-cadherin
and claudin-5 and downregulates claudin-5 expression
(Shen et al., 2011; McMillin et al., 2015). The chemokine
C-C motif chemokine ligand (CCL) 2, which attracts
monocytes, causes loss of TJ protein expression, as well
as TJ protein redistribution that is mediated by cav-
eolae (Stamatovic et al., 2005, 2006, 2009). Enzymatic
degradation of TJ proteins at the BBB can also occur in
response to neuroinflammatory insults. MMP inhibi-
tion or knockout prevents the degradation of TJs and
BBB disruption in the acute phase following brain
ischemia-reperfusion injury (Asahi et al., 2001; Yang
et al., 2007). Protective factors have also been identified

that preserve TJ protein expression at the brain
endothelium. These include IL-25, netrin-1, and
annexin A1, which are expressed by BECs, and sonic
hedgehog, which is secreted by astrocytes (Sonobe et al.,
2009; Alvarez et al., 2011; Cristante et al., 2013;
Podjaski et al., 2015). IL-1b can decrease sonic hedge-
hog expression (Wang et al., 2014b). Other inflamma-
tory mediators of increased paracellular BBB
permeability include bradykinin, histamine, serotonin,
arachidonic acid, and ATP (Abbott, 2000). Clearly, TJs
may become dysfunctional under a number of different
proinflammatory states. However, other routes of BBB
dysfunction that result in leakiness also occur in re-
sponse to inflammation and are discussed below.

2. Transcytotic Vesicular Pathways. Ultrastruc-
tural studies of the BBB dating as far back as the
1970s have revealed that damaged BECs can form
patent vesicular channels that permit the passage of
large molecular tracers such as horseradish peroxidase
into the CNS (Lossinsky and Shivers, 2004). Such
vesicular structures have been described in cerebral
edema, traumatic brain injury, and sepsis (Castejon,
1980, 1998; Esen et al., 2012). In some instances, the
formation of transcellular channels occurs in the ab-
sence or independently of ultrastructural changes in
TJs (Lossinsky and Shivers, 2004; Esen et al., 2012;
Goncalves et al., 2017). Despite the potential contribu-
tion of vesicles and transendothelial channels to BBB
leakage, the molecular underpinnings of their forma-
tion remain relatively understudied. One protein that is
ubiquitously expressed in peripheral endothelial cells is
plasmalemma vesicle-associated protein (Plvap), which
is sometimes referred to as MECA-32. Plvap associates
with endothelial fenestrae and contributes to fenestrae
formation in peripheral vessels (Herrnberger et al.,
2012a,b). Plvap is suppressed in brain endothelium
(Hallmann et al., 1995), but is upregulated in diseases

Fig. 2. Axes 1 and 3: disruption, transport, and penetration. Major influx mechanisms are transcellular diffusion and saturable transport. Influx is
countered by efflux (transcellular diffusion, saturable transport, reabsorption of CSF) and enzymatic activity at the BBB. Disruption can be by way of
transcellular/transcytotic or paracellular mechanisms. Endothelial damage and hemorrhage are not depicted. The extracellular pathways are
relatively inefficient routes of CNS uptake vs. saturable transport and used by substances that include albumin, immunoglobulins, erythropoietin, and
soluble receptors.
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that are associated with BBB disruption, such as
Alzheimer disease (AD) or multiple sclerosis (MS)
(Engelhardt et al., 1994; Yu et al., 2012). Furthermore,
Mfsd2a (described above in Features and Functions of
the Blood–Brain Barrier and Blood-Brain Interface) is
downregulated in a mouse model of intracerebral
hemorrhage that, in part, mediates BBB disruption
(Yang et al., 2017). Therefore, formation of endothelial
fenestrations may be an important contributor to BBB
leakage in some disease states.
3. Endothelial Cell Damage and Hemorrhage.

Cerebral microbleeds (CMB) are associated with neuro-
vascular insults such as ischemia-reperfusion injury,
intracranial hemorrhage, cerebrovascular diseases, and
following traumatic brain injury (Kleinig, 2013). CMBs
are also observed in sepsis patients (Correa et al., 2012),
and systemic inflammation is higher in patients with
CMBs (Miwa et al., 2011). CMBs are visualized as
hemodesmerin deposits, which are iron-rich breakdown
products of hemoglobin (Kleinig, 2013). Recent work
using animal models of subchronic systemic inflamma-
tion and ischemia-reperfusion injury has demonstrated
that BBB disruption and neuroinflammation can be
associated with subsequent development of microbleeds
(Krueger et al., 2015; Sumbria et al., 2016). In C57BL6/J
mice treated with three repeated doses of LPS, CMBs
became evident 2 days after the final injection and
persisted by day 7. Furthermore, CMBs significantly
correlated with markers of neuroinflammation follow-
ing LPS treatment (Sumbria et al., 2016). In a rodent
ischemic-reperfusion injury model, it was observed that
leakage of albumin within the ischemic area occurs in
the absence of changes in TJ or AJ protein-staining
patterns (Krueger et al., 2015). However, structural
alterations to the endothelial surface were evident and
indicated regions where the endothelium was damaged
or absent; these damaged endothelial cells colocalized
with albumin extravasation. Ultrastructural analysis
revealed that, at early stages of damage, endothelial cell
edema occurs without apparent extravasation of in-
travascular tracer. Influx of tracer into the brain
parenchyma only became apparent after complete loss
of endothelial cell integrity, and influx of red blood cells
into the CNS occurred following basement membrane
degradation (Krueger et al., 2015). Neutrophil-derived
proteases such as MMP9 and elastase have been shown
to contribute to the breakdown of the ECM and de-
struction of the endothelium in ischemia-reperfusion
injury (Gidday et al., 2005; Stowe et al., 2009; Ikegame
et al., 2010; Turner and Sharp, 2016). Intracerebral
injection of neutrophil elastase causes endothelial
swelling and focal necrosis of blood vessels, as well as
focal hemorrhages and leukocyte cuffing of the vessels
(Armao et al., 1997).
The existence of these three modes of BBB disruption

necessitates a careful interpretation of TJ protein
expression data. The absence of apparent changes in

TJ proteins does not necessarily mean that the BBB is
intact, as leakage may occur via vesicles, transcellular
channels, or damaged endothelial cell membranes.
Conversely, a decrease in TJ protein expression may
reflect BBB damage that is more severe than para-
cellular leakage, such as endothelial cell degeneration
where the whole cell is lost in addition to the TJ. The
works that have highlighted these varied modes of BBB
disruption also suggest that different therapeutic ap-
proaches to protect the BBB may need to be considered
based on which mode of BBB leakage predominates.

B. Axis 2: Modulation of Barrier and Interface
Functions by Immune Substances

The BBB has many functions other than that of
forming a barrier between the peripheral circulation
and the CNS. It broadly serves other roles, including
that of regulating the homeostatic environment of the
CNS, supplying the nutritional needs of the CNS, and
being the center point in the humoral-based communi-
cations between the CNS and peripheral tissues. One of
the main ways in which the BBB fulfills these functions
is through the possession of various transport systems.
These transporters have in common that they are self-
saturable. As described above, transporters can be
variously classified as energy requiring (active trans-
port) or not energy requiring (facilitated diffusion).
Active transport can be unidirectional, transporting a
substance against its concentration gradient, whereas
facilitated diffusion is bidirectional with net transport
being in the direction of higher to lower concentration.
As a rough guide, substances that are the major ligand
for a blood-to-brain (influx) transporter can enter the
brain at rates that are 10–100 times faster than if they
were to depend on nonsaturable mechanisms, and
substances transported out of the CNS (efflux trans-
porters) accumulate at rates 1/10 or so lower thanwould
be expected from their transcellular diffusion. Several
important transporters are modulated by neuroinflam-
mation and neuroimmune substances (Fig. 3). Pgp is a
major efflux transporter for small, lipid-soluble mole-
cules. It resides in the luminal membrane of BECs and
the ependymal cells forming the choroid plexus. As
discussed above, its ligands represent a diverse group of
substances and include protease inhibitors, opiates
(endogenous and exogenous; peptides and small mole-
cules), anti-epileptics, cyclosporins, glucocorticoids, al-
dosterone, dexamethasone, and calcium channel
blockers (Begley, 2004). Its activity explains why cer-
tain substances do not accumulate in the brain in
sufficient quantities to produce an effect on the CNS.
As such, it can be viewed either as protecting the brain
from xenobiotics, including drugs, that would otherwise
produce significant CNS side effects or as a major
obstacle to the development of CNS therapeutics. Pgp
function is modulated by inflammation with the main
effect in vivo being a downregulation of its transport
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function. Details of immune regulation of Pgp function
are detailed later in section IV of this review.
Influx transport can also be affected by inflammation.

The Na-K-Cl cotransporter at the BEC, important in
cerebral ionic homeostasis, is modulated by IL-6 se-
creted from astrocytes (Sun et al., 1997). Insulin is
transported across the BBB and acts in the brain,
having effects on cognition and feeding (Banks et al.,
2012b). CSF/serum ratios of insulin are reduced in AD,
and delivery of insulin to the brain of AD patients can
improve cognitive functions (Craft et al., 1998, 1999,
2012). LPS acts indirectly through a nitric oxide–
dependent pathway to increase BBB transport of in-
sulin (Xaio et al., 2001).
Some of the many and diverse effects of LPS on

barrier functions are directly mediated by the presence
of Toll-like receptors on barrier cells. The expression by
BECs of at least some of these receptors are themselves
regulated by oxidative stress and TNF-a (Nagyoszi
et al., 2010). The bacterial cell wall components LPS
and muramyl dipeptide also regulate the BEC expres-
sion of nucleotide-binding oligomerization domain
(NOD) and NOD-like receptors (NLRs), intracellular
sensors of pathogen and damage/danger-associated
molecules (Nagyoszi et al., 2010). Expression of NLRs
and of NODs, the domain of NLRs that binds glycopep-
tides such as N-acetylglucosamine, is upregulated as
well by inflammatory cytokines, including IFN-g, TNF-
a, and IL-1b (Nagy}oszi et al., 2015).
The response of the brain barriers to neuroimmune

stimuli can be modulated, reversed, or blocked by a
number of agents as well. BECs express cannabinoid
type 2 receptors. Agonists of these receptors prevented
32 of 33 genes from being upregulated by TNF-a and
diminished TNF-induced BBB disruption and macro-
phagemigration (Persidsky et al., 2015). Prostaglandins,

as evidenced by the effects of treatment with indometh-
acin, can block, enhance, or have no effect on the actions
of LPS on BBB functions (Guillot and Audus, 1990;
Minami et al., 1998; Xaio et al., 2001).

C. Axis 3: Transport, Penetration, and Uptake of
Neuroimmune-Related Substances

Blood-to-brain entry has been assessed for some
neuroimmune substances. Several cytokines have been
shown to cross the BBB by way of saturable transport
systems and antibodies and soluble receptors can enter
the brain by way of the extracellular pathways.

Many cytokines are transported across the BBB in
the blood-to-brain direction (Fig. 2). Such transport
intermingles the peripheral pool of the cytokine with
its CNS pool. The transport systems for cytokines are
saturable and are selective, perhaps even specific, for a
cytokine or family of cytokines. For example, the trans-
port of TNF-a is self inhibited, but not inhibited by IL-6
nor by any of the IL-1s (Gutierrez et al., 1993; Banks
et al., 1994). The IL-1s (IL-1a, IL-1b, IL-1 receptor
antagonist) both self inhibit as well as inhibit each
other’s transport, but have not been found to inhibit the
transport of any other cytokine (Banks et al., 1991).
Therefore, the IL-1 family either shares a single trans-
porter or a family of closely related transporters.
Epidermal growth factor crosses the BBB using a
transporter shared with TGF-a (Pan and Kastin,
1999). CCL2 (monocyte chemoattractant protein 1)
transport is not shared with CCL3 (macrophage-
inhibitory protein 1-a) (Ge et al., 2008). Other cytokines
formally demonstrated to be transported across the
BBB include ciliary neurotrophic factor and TGF-b2
(Pan et al., 1999; McLennan et al., 2005), but TGF-b1 is
not transported across the intact BBB (Kastin et al.,
2003). To date, only IL-2 and CCL11 have been found to

Fig. 3. Axis 2: modulation of barrier/interface function. Immunoactive (IA) substances work through four main pathways to alter BBB functions. (A) IA
substances act on a peripheral cell that then releases a substance that acts on the barrier. Example: LPS acts on a peripheral cell inducing it to release
nitric oxide, and the nitric oxide then acts on BECS to alter insulin transport. (B) IA acts on the BEC to induce an alteration mediated through
intracellular machinery. Example: TNF alteration of Pgp function, which is mediated through a pathway involving nitric oxide and endothelin-1. (C) IA
acts directly at a BEC receptor or transporter. Example: IL-1ra blocks BBB transport of IL-1b. (D) IA acts on barrier cell receptor/transporter (i)
inducing barrier cell secretion that acts in autocrine fashion to affect barrier function (example: LPS induces BEC to secrete IL-6 and granulocyte-
macrophage colony-stimulating factor, which mediates LPS-induced increase in HIV-1 passage across the BBB) or (ii) to induce barrier cell to
communicate with another CNS cell whose release modifies barrier cell activity (example: presence of pericyte enhances LPS-induced increase in HIV-1
passage across the BBB).
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have a saturable component to their brain-to-blood
efflux phase (Banks et al., 2004b; Erickson et al.,
2014), although others can enter the circulation with
CSF reabsorption (Chen et al., 1997; Chen and Reichlin,
1998). It has also been suggested that the duffy antigen
chemokine receptor on brain endothelial cells contrib-
utes to brain efflux of CCL2 and CCL5 following a
neuroinflammatory stimulus (Minten et al., 2014).
Little is known about the cellular biology of cytokine

transport across the BBB or what circulating factors
may affect such transport. Cytokine-induced neutrophil
chemoattractant 1 enters the brain by a nonsaturable
mechanism, presumably that of transcellular diffusion
(Pan and Kastin, 2001a). At a mol. wt. of 7800 Da, this
would be the largest known substance to use this
pathway, which essentially involves the molecule first
partitioning into the lipids of the barrier cell membrane
and eventually back into the aqueous environment of
brain interstitial fluid or CSF. Erythropoietin enters
the CNS by the nonsaturable process of the extracellu-
lar pathways, although it is unclear the degree to which
this underlies its many neuroprotective effects (Brines
et al., 2000; Banks et al., 2004a). In general, the
extracellular pathways account for little of the uptake
for cytokines that use a saturable transporter to cross
the BBB (Plotkin et al., 1996). For most endogenous
biologics studied to date, the protein responsible for
transport is not the same as that used by the cell for
receptor functions (Pan and Kastin, 1999), although
there seem to be more exceptions to this rule for
cytokines than for other biologics (Pan and Kastin,
2002; Pan et al., 2006a; Ge et al., 2008). CCL2 transport
is caveolae dependent (Ge et al., 2008); IL-2 blood-to-
brain transport is inhibited, in addition to other mech-
anisms, by protein binding (Banks et al., 2004b); and
CCL11 (eotaxin-1) binds to cellular components in blood
that slows its early-phase entry (Erickson et al., 2014).
Most cytokine transport studies have been done in the

mouse, but transport of IL-1a and IL-6 has been shown
to occur in rats and of IL-1b and IL-6 in fetal sheep
(Luheshi et al., 1994; Plotkin et al., 2000; Threlkeld
et al., 2010; Sadowska et al., 2015), indicating that
cytokine transporters are expressed early in develop-
ment and across species. An in vitro study using porcine
BBB endothelial cells found transport of IL-1 and IL-1
receptor antagonist, further supporting the idea that
cytokine BBB transporters occur in multiple species
(Skinner et al., 2009).
The transport of cytokines has been shown to

affect brain function in several experimental designs
(Table 1). The first such investigation showed that
human IL-1a crossed the BBB at the posterior division
of the septum to induce cognitive dysfunction (Banks
et al., 2001a). This finding is consistent with IL-1a being
the chief mediator of sickness behavior, including the
cognitive dysfunction of sickness behavior (Larson and
Dunn, 2001; Kelley et al., 2003). Injection into the

posterior division of the septum of blocking antibodies
that were specific for human IL-1a, but unable to block
mouse IL-1a, was able to prevent the cognitive impair-
ment induced by the i.v. injection of human IL-1a. Thus,
it was demonstrated that the IL-1a injected into the
bloodstream must be crossing the BBB at the posterior
division of the septum to induce cognitive dysfunction.
Fibroblast growth factors have been shown to cross the
BBB (Cuevas et al., 1996; Hsuchou et al., 2013) so that
peripherally administered fibroblast growth factors
promote neurogenesis and protect against stroke and
traumatic brain injury (Cuevas et al., 1998; Wagner
et al., 1999; Sun et al., 2009).

Two studies with TNF-a have shown that its trans-
port across the BBB is needed for the peripherally
administered cytokine to induce its CNS effects. Qin
et al. (2007) showed that TNF-a crossing the BBB acts
on microglia to induce brain inflammation, including
the release of more TNF, resulting in apoptosis of
dopaminergic cells in the substantia nigra. Tangpong
et al. (2006, 2007) in a mouse model of chemobrain
showed that TNF crosses the BBB to release additional
TNF from brain stores of TNF, thus augmenting the
toxicity of blood-derived TNF (Joshi et al., 2010). This
model of dual action of a blood-derived cytokine acting
both directly on a CNS target tissue as well as
augmenting its levels by inducing release from CNS
sources may apply generally to cytokines that cross the
BBB. Indeed, in the IL-1a studies considered above,
blocking antibodies specific for mouse IL-1a were
partially effective in preventing cognitive impairment.
Ogawa et al. (2016) found that peripherally adminis-
tered orexin improved survival from endotoxic shock.
Because they found that orexin crossed the BBB,
confirming previous work by Kastin and Akerstrom
(1999), and because orexin administered into the CNS
produced many of the effects of peripherally adminis-
tered orexin, they concluded that peripheral orexin
crossed the BBB to induce its effects via the CNS.

The rate of cytokine transport is not homogenous
throughout the brain but varies tremendously across
regions. Uptake by the CVOs, areas of the brain in

TABLE 1
CNS effects of cytokines dependent on their transport across the BBB

Cytokine Effect Reference

IL-1 Impairs cognition Banks et al., 2001a
IL-1ra Improves stroke outcome Zhang et al., 2017a
FGF Protects against ischemia-

reperfusion injury
Cuevas et al., 1998

FGF TBI protection Sun et al., 2009
FGF Stimulation of neurogenesis Wagner et al., 1999
TNF Induction of Parkinson’s-like

symptoms
Qin et al., 2007

TNF Chemobrain Joshi et al., 2010
Orexin Improved septic shock survival Kastin and Akerstrom,

1995; Ogawa et al.,
2016

FGF, fibroblast growth factor; TBI, total body irradiation.
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which the capillaries form either no or a less efficient
barrier, takes up an estimated sevenfold more cytokine
than the adjacent barrier areas (Plotkin et al., 1996;
Maness et al., 1998). Interestingly, CVO uptake was
also saturable and, although entering at a much higher
rate than the rest of the brain, only accounted for 5% of
whole brain uptake (Plotkin et al., 1996). Diffusion from
the CVO to the adjacent brain region is either highly
restricted because of the diffusional limitations of
Brownian motion or absent because of a tanycytic
barrier between the CVO and adjacent brain tissue
(Maness et al., 1998).
Cytokine transport is alsoheterogeneous for those brain

regions with a complete BBB. TNF transport varies by
10-fold between the region with the highest uptake, the
hypothalamus, and lowest, the parietal cortex (Banks
et al., 2001c). For IL-1, the posterior division of the septum
has a very high uptake, whereas the midbrain and
striatum did not transport IL-1 (Moinuddin et al., 2000).
TGF-b2 is transported at its highest rate into the
hypothalamus and lowest into the cerebral hemispheres
(McLennan et al., 2005). The spinal cord can also take up
cytokineswith transport rates varyingamong the cervical,
thoracic, and lumbar regions (Pan et al., 1997b).
Cytokine transport rates are altered by physiologic

and pathologic events. IL-1 and TNF transport varies
diurnally with transport into the spinal cord varying
10-fold for IL-1 (Banks et al., 1998b; Pan et al., 2002).
TNF transport is increased by traumatic brain injury,
spinal cord injury, in experimental autoimmune ence-
phalomylelitis (EAE), and stroke (Pan et al., 1996,
1997a, 2003a, 2006b; Pan and Kastin, 2001b). In
contrast to TNF, IL-15 transport across the BBB is
decreased in EAE (Hsuchou et al., 2009). Transport of
leukemia-inhibitory factor is increased by spinal cord
injury, neuroinflammation, and TNF (Pan et al., 2006a,
2008). Chronic opiate exposure and withdrawal are

associated with the induction of blood-to-brain trans-
port of IL-2 (Lynch andBanks, 2008), whereas the efflux
of IL-2 and influx of IL-1a and TNF are unaffected. The
response of the BBB to injury often shows heterogenous
regional and temporal changes in transport rates as
illustrated by TNF (Pan et al., 1997a, 2003b; Pan and
Kastin, 2001b).

Soluble receptors, as exemplified by that for IL-6, can
cross the BBB to influence behavior. Patel et al. (2012)
showed that peripherally administered soluble IL-6
receptor interacts with Gp130 in some brain regions to
induce stereotypic behaviors.

Some immune substances are able to enter the brain
by the extracellular pathways (Broadwell and Sofro-
niew, 1993). The extracellular pathways are a major
way in which that small amount of albumin found in the
CSF enters the CNS. The extracellular pathways result
in a unique distribution in brain, including that of
tracking along the penetrating arterioles. Thus, the
distribution of substances entering the CNS via the
extracellular pathways is distinct from the patterns
seen for substances entering via the vascular route or
the choroid plexus. To take advantage of the extracel-
lular pathways, a substance must have a very long half-
life in blood and, because very small amounts enter by
this route, it must be potent. Pharmacologic substances
that have been shown to enter the CNS by this pathway
include antibodies, soluble receptors, and erythropoie-
tin (Banks et al., 2002; Banks, 2004).

D. Axis 4: Immune Cell Trafficking between Blood
and Brain

In most tissues, blood-borne leukocytes survey pa-
renchymal spaces and are actively recruited upon in-
fection or injury. CNS barriers confer specialization to
mechanisms of leukocyte surveillance and recruitment
to the brain (Fig. 4). Surveillance by blood-borne

Fig. 4. Axis 4: immune cell trafficking. Immune cell passage across the BBB is a highly regulated process and can occur at the vascular BBB, chroroid
plexus, or meninges. Passage can be between or across the BEC and involves steps that include capture, rolling, arrest, crawling, and diapedesis.
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leukocytes is thought not to occur in the healthy brain
parenchyma (Filiano et al., 2017) or to occur at low
levels (Banks et al., 2012), but the chorioid plexus and
meninges are surveyed by blood-borne populations of
T-cells. Leukocyte counts of up to 5000/ml may be
observed in healthy human CSF (Seehusen et al.,
2003), and about 80% of CSF leukocytes are CD4+

central memory T-cells (Engelhardt and Ransohoff,
2005). T-cells within the choroid plexus and meningeal
compartments contribute to host defense and mediate
responses to injury, and they also regulate physiologic
CNS functions (Shechter et al., 2013; Raposo et al.,
2014; Filiano et al., 2017). For example, mice that lack
T-cells or receive antibodies that block T-cell migration
have impaired learning and memory and social behav-
ior (Filiano et al., 2017). Because meningeal T-cells do
not actively survey the brain parenchyma under phys-
iologic conditions, it is believed that soluble factors
secreted by T-cells within the meninges may be carried
by the CSF/ISF to brain regions that contribute to
rodent behaviors. One candidate T-cell–derived regula-
tor of behavior is IFN-g. Mice lacking IFN-g are less
social and have aberrant hyperconnectivity in their
prefrontal cortex (Filiano et al., 2016). Furthermore,
administration of IFN-g in CSF can rescue social
deficits in mice lacking T-cells (Filiano et al., 2017).
Leukocyte recruitment to CSF compartments

through the BCSFB, as well as to brain parenchyma
via parenchymal blood vessels, relies on a multistep
extravasation process that varies depending on the
basal expression of adhesion molecules. The typical
process of leukocyte extravasation into tissues involves
an initial capture of the circulating leukocyte, followed
by rolling on the endothelial surface, arrest, crawling,
and diapedesis across the endothelium (Vestweber,
2015). Additionally, to enter the brain parenchyma,
leukocytes must penetrate the basement membrane
along the glia limitans that lines the paravascular space
(Engelhardt and Coisne, 2011). The initial capture and
rolling steps are mediated by the interactions of selec-
tins on the endothelial cell surface with glycoproteins on
the leukocyte surface (Vestweber, 2015). Peripheral and
meningeal endothelial cells, as well as endothelial cells
within the choroid plexus stroma, express selectins that
are retained in intracellular vesicles called Wiebel–
Palade bodies (Engelhardt and Coisne, 2011). These
vesicles are routed to the endothelial lumen in response
to inflammatory mediators, enabling the rapid upregu-
lation of selectins at the luminal membrane (Metcalf
et al., 2008). The initial capture of CD4+ T-cells that
reside in the CSF is mediated by P-selectins expressed
on blood vessels in the choroid plexus and subarachnoid
space (Kivisakk et al., 2003). In contrast, endothelial cells
of the brain parenchyma do not express selectins in their
Weibel–Palade bodies and require de novo synthesis of
selectins to enable the capture and crawling of leukocytes
(Engelhardt and Coisne, 2011). Activated lymphocytes

can cross the naive BBB, but they do so by a very
inefficient process of abrupt arrest on the endothelial cell
surface that is mediated by interactions between endo-
thelial cell adhesion molecules and integrins on
the lymphocyte surface (Vajkoczy et al., 2001). Therefore,
leukocyte trafficking to the inflamed CNS tends to be
delayed when compared with other tissues.

The regulation of leukocyte trafficking to the CNS is
multifaceted and depends on the activation state of the
leukocytes and the endothelial interface, as well as the
inflammatory milieu of the CNS and peripheral com-
partments. IL-1b is an important mediator of neuro-
inflammation, including leukocyte trafficking to the
CNS (Bolton et al., 1998; Ching et al., 2007; McKim
et al., 2017). BECs are the predominant expressors of
type 1 IL-1 receptor (IL-1R1) in the CNS, and endothe-
lial IL-1R1 is an important contributor to IL-1b–
mediated leukocyte influx (Ching et al., 2007; Liu
et al., 2015; McKim et al., 2017). The endothelial-
specific knockdown of IL-1R1 abrogates leukocyte influx
induced by centrally injected IL-1b (Ching et al., 2007;
Liu et al., 2015). However, the effects of centrally
expressed IL-1b on leukocyte trafficking can be di-
minished by systemic inflammation. For example,
systemic administration of LPS, when given within
2 hours of an intracerebroventricular injection of
IL-1b, inhibits leukocyte recruitment to the CNS by
preventing the upregulation of selectins on BECs
(Ching et al., 2006). Functional consequences of this
pathway have been demonstrated in a rodent model of
stress-induced anxiety, in which the interaction of
IL-1b–expressing monocytes with endothelial cells in
threat-appraisal centers of the CNS mediates anxiety
behaviors (McKim et al., 2017). In contrast, lympho-
cytes from chronically stressed mice have antidepres-
sant effects (Brachman et al., 2015).

Diapedesis of leukocytes in CNS tissue may occur via
paracellular or transcellular routes, depending on cell
type and disease state (Millan et al., 2006; Gorina et al.,
2014; Abadier et al., 2015). There is crosstalk between
leukocytes and tight junctional complexes at the BBB
that may affect both paracellular permeability and the
leukocyte’s ability to traverse the endothelial barrier.
For example, an antibody that blocks JAMs also inhibits
monocyte transmigration to the CSF and brain paren-
chyma in experimental meningitis (Del Maschio et al.,
1999). Intracellular adhesion molecule 1 activation
stimulates VE cadherin phosphorylation and cytoskel-
etal rearrangement in BECs, which facilitates diapede-
sis (Turowski et al., 2005; Turowski et al., 2008).
However, in EAE, a model of MS, transcellular di-
apedesis of mononuclear cells across cerebral endothe-
lial cells leaves TJs morphologically intact (Wolburg
et al., 2005). Therefore, the loss of paracellular BBB
integritymay not be requisite for diapedesis in all cases.

Recent work has identified the choroid plexus as an
important site for leukocyte trafficking following CNS
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injury, despite its distal location. For example, in spinal
cord injury, anti-inflammatory macrophages are re-
cruited to the site of injury via the choroid plexus
(Shechter et al., 2013). In this model, it was shown that
CPE cells upregulate their expression of adhesion mol-
ecules that facilitate the extravasation of recruited
macrophages into CSF. Furthermore, blocking the flow
of CSF to the injury site using Matrigel also inhibited
trafficking of the macrophages to the site of injury
(Shechter et al., 2013). In a distinct model of permanent
middle cerebral artery occlusion, it was shown that about
two-thirds of T-cells that infiltrate the peri-infarct area
are recruited from the choroid plexus stroma (Llovera
et al., 2017). Interestingly, this study noted that the
apical region of the CP stroma was physically connected
to penetrating vessels from the brain parenchyma, and
that the apparent routes of T-cell trafficking from CP
stroma to the corpus callosum and finally to the peri-
infarct region with fast kinetics were suggestive of a
direct pathway of migration that did not involve homing
through the CSF. Furthermore, injection ofMatirgel into
the ventricle, which blocks CSF-mediated routes of T-cell
homing, had no effect on T-cell trafficking to the peri-
infarct region in this model (Llovera et al., 2017). These
results highlight a possible novel route of T-cell traffick-
ing to brain parenchyma where T-cells may bypass brain
barriers.
The functional consequences of leukocyte trafficking

to the CNS have been studied in a variety of disease
states, and these, along with other aspects of BBB

dysfunction in disease, will be discussed in section IV
below.

E. Axis 5: Immune Secretions of the Barrier Cells

The barrier cells that form the vascular BBB, the
choroids plexus, and the tanycytic barriers are in
constant crosstalk with other cells of the CNS. The
concept of this crosstalk is embodied in the term NVU;
participating cells include pericytes, astrocytes, micro-
glia, neurons, and mast cells, as discussed above. The
crosstalk, among other functions, serves to inform the
barrier cells of the needs of the CNS so that the barrier
cells can adapt their functions to meet those needs.
Many of the agents used to conduct this crosstalk are
neuroimmune mediators, including cytokines, prosta-
glandins, and nitric oxide. Furthermore, the barrier
cells not only respond to these and other neuroimmune
agents, but also secrete them (Fig. 5). Neuroimmune
substances, then, are intimately involved in NVU
crosstalk and the resulting characteristics of the
barriers.

Most of the work examining the ability of barrier cells
to secrete neuroimmune substances has been in vitro
and has been conducted with BECs. Early work showed
that BECs could secrete IL-6, prostaglandins, and nitric
oxide constitutively and in response to stimulation
(Fabry et al., 1993; Mandi et al., 1998; Reyes et al.,
1999;McGuire et al., 2003). Laterwork found thatmany
other cytokines are secreted by barrier cells. Major
principles can now be elucidated for this area, including

Fig. 5. Axis 5: immune secretions by barrier cells. Secretions can be from either the luminal or abluminal surface (cell A). Secretions can be
constitutive or induced by immune modulators (cell B). Barrier cells can receive immune modulator input from one surface (e.g., abluminal) and
respond by secreting from the opposite surface (e.g., luminal), forming an axis that transmits neuroimmune communication across the BBB (cell C).
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the following: 1) constitutive secretion can bemodulated
by immune stimulants, such as LPS, viruses and viral
proteins, and bacteria (Hofman et al., 1999; Didier et al.,
2002); 2) barrier cells can respond to immune stimula-
tion acting at either their CNS or blood side; 3) coculture
with other components of the NVU such as astrocytes
and pericytes can modulate secretion of cytokines and
other neuroimmune substances; and 4) secretion is
bipolar in the sense that cytokines can be secreted from
the luminal (i.e., into the blood) or the abluminal (i.e.,
into the brain) side of the BBB.
The combination of axis 2 and axis 5 means that a

barrier cell can receive immune stimulation for one side
(e.g., the blood or luminal side) and release cytokine
from the other side (e.g., the brain or abluminal side)
(Verma et al., 2006). As such, this forms a type of
neuroimmune axis in which information from one side
of the BBB is transferred to the other.
There are several examples in which barrier secre-

tions respond to immune stimulations. In response to
LPS, BECs release granulocyte-macrophage colony-
stimulating factor and IL-6, which then act in an
autocrine fashion to increase transport of HIV-1 across
the BBB. Pericytes secrete substances, possibly kerati-
nocyte chemoattractant and CCL2, that further en-
hance this effect of LPS (Dohgu and Banks, 2013).
Adiponectin can act at the luminal membrane of the
BEC to modify BEC secretion of IL-6 into the brain.
The combination of axis 2 and axis 5 is also a basis for

interactions between the BBB and other elements of the
NVU.Most of these have been elucidated in vitro and some
are complex, involving bidirectional communications
among several cell types. For example, McCarthy and
Kosman (2014) have elucidated a pathway involving
immune regulation of BBB transport of iron by astrocytic
ceruloplasmin. In this scenario, LPS acting at the luminal
surface of BECs elicits secretion of IL-6 and IL-1b from
their abluminal surface; these cytokines then stimulate
glial/astrocytic secretion of ceruloplasmin, which then acts
at the abluminal surface of the BEC to faciliate BBB
transport of iron (McCarthy and Kosman, 2014). Insulin
transport across the BBB also shows a complex interplay
of cellular crosstalk. An in vivo study showed that animals
treated with LPS have an increased rate of transport of
insulin across the BBB that is mediated by nitric oxide.
However, this effect is not direct. LPS treatment increases
activity of all three nitric oxide isoenzymes, but nitric oxide
generated from neuronal nitric oxide synthase inhibits
insulin function. LPS also stimulates endothelial nitric
oxide synthase and neuronal nitric oxide synthase, which
indirectly through an unknown cell and unknown media-
tor increase insulin transport across theBBB (Banks et al.,
2008). Other examples of crosstalk include the ability of Ab
peptide to induce release of chemokines from monocytes
that then act on BECs to increase immune cell trafficking
(Fiala et al., 1998) and astrocytic release of TNF, inducing
BECs to secrete nitric oxide (Shafer and Murphy, 1997).

IV. Physiologic Conditions, Disease States, and
Pharmacologic Agents

The interplay of the BBB and neuroimmunology has
the potential to both provide a substrate for diseases of
the CNS and also for pharmacologic intervention. There
is an increasing number of conditions and treatments
that involve the BBB and neuroimmunology. Below, we
consider some examples from a rapidly growing field.

A. Sickness Behavior

Sickness behavior is a conglomeration of host re-
sponses to infection or inflammation and includes
lethargy; sleepiness; depression/anhedonia; anorexia;
anxiety/irritability; decreased social interactions; loss of
interest in sex, grooming, and the environment; and
cognitive changes, including deceased concentration,
learning, and memory (Dantzer and Kelley, 2007).
Sickness behavior, at least short-term, is adaptive in
that it reorganizes the host’s priorities to cope with
infection.

Sickness behavior is not only an important adaptive
response to illness, but also important as a model of
psychoneuroimmune processes. Sickness behavior can
be induced by a wide range of immune stimulants, but
IL-1 seems to be especially efficient at inducing the
complete range of behaviors (Bluthe et al., 1992;
Larson and Dunn, 2001). A role for the BBB has been
elucidated for several aspects of sickness behavior (Fig.
6). As discussed above, transport of IL-1 to the
posterior division of the septum is an important step
in decreased learning andmemory (Banks et al., 2001a).
Activation of BEC cyclooxygenase (COX)-1 or COX-2
with subsequent production of prostaglandin E2 is
important in activation of the hypothalamic-pituitary-
adrenal (HPA) axis, fever, and malaise/discomfort, the
latter mediated through the striatum and GABAergic
inhibition of dopaminergic cells (Engstrom et al., 2012;
Fritz et al., 2016; Nilsson et al., 2017). Transport of
kynurenine into the brain by the amino acid transporter
LAT-1 is key to the depression-like symptoms of
sickness behavior (O’Connor et al., 2009; Walker et al.,
2015). By blocking kynurenine transport, leucine can
confer antidepressant effects. COX-2 activation in an
unknown cell type other than the BEC is involved in
anorexia (Nilsson et al., 2017). The mechanisms un-
derlying other aspects of sickness behavior are yet to be
explored.

B. Perinatal Brain Ischemia

Hypoxia-ischemia is a common problem that can
occur during gestation, with birth, or in the postnatal
period. In the short-term, it can result in seizures and
an encephalopathy, and long-term it can result in
cerebral palsy, impairments in hearing and vision,
cognitive impairments, and problems with attention
and irritability. In utero brain ischemia induces
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proinflammatory events, including increased in-
creases in IL-1b and IL-6 in the brains of both mothers
and their fetuses (Sadowska et al., 2012), opening of
the fetal BBB, and increased cytokine transport into
the fetal brain (Chen et al., 2012; Sadowska et al.,
2015; Patra et al., 2017). That these cytokine eleva-
tions are causal to brain damage is illustrated by the
ability of blocking antibodies directed against IL-1b
and IL-6 to reduce cytokine transport across the BBB,
reduce cytokine levels in brain, and attenuate or
reverse BBB disruption (Chen et al., 2015; Zhang
et al., 2015; Patra et al., 2017). Thus, blocking
antibodies directed against these cytokines has
therapeutic potential.

C. Multiple Sclerosis

MS is a chronic neuroinflammatory disease that affects
the brain and spinal cord. The average age of MS onset is
30 years and causes serious physical disabilities in those
afflicted. MS presents heterogeneously, with symptoms
that may include sensory and visual disturbances, im-
paired motor functions, pain, fatigue, and/or cognitive
dysfunction depending on the afflicted CNS regions
(Dendrou et al., 2015). The most common course of MS
is relapsing-remitting, in which the presentation of
symptoms is followed by partial or complete recovery.
However, there are also progressive courses of MS, in
which symptoms do not improve and become worse over
time. In primary progressive MS, neurologic symptoms
worsen from the onset of disease presentation. Secondary

progressive MS follows an initial relapsing-remitting
course (Lublin et al., 2014). Inflammatory lesions of
infiltrating immune cells are a hallmark ofMS, and the
inflammation and gliosis within these regions contrib-
ute to demyelination and axonal degeneration. Al-
though the precise cause of MS is unknown, the
disease is thought to arise from an autoimmune re-
sponse to brain antigens (Dendrou et al., 2015). In
human disease, it is unclear whether autoimmunity
develops in the CNS or in the periphery. However, in
rodent experimental autoimmune encephalomyelitis
(EAE), which is a model of human MS, autoimmunity
is induced outside of the CNS via either immunization
against brain antigen or systemic injection of T-cells
that are autoreactive against brain antigens (Baxter,
2007; Lassmann, 2008). In MS and EAE, T-cells in-
filtrate the brain in early stages of disease (Fletcher
et al., 2010; Dendrou et al., 2015).

In EAEmodels that employ exogenous application of
autoreactive T-cells to induce disease, very few of
these T-cells initially invade the CNS parenchyma
(Engelhardt and Ransohoff, 2012). This is, in part,
because the BBB is not fully primed for leukocyte
recruitment and so does not efficiently permit T-cell
diapedesis. Encephalitogenic T-cell blasts that are
injected into naive mice interact with spinal cord white
matter microvessels via a direct capture in the absence
of rolling that is mediated by a4-integrin and vascular
cell adhesion molecule (VCAM)-1 (Vajkoczy et al.,
2001). However, T-cell trafficking through the choroid

Fig. 6. Sickness behavior. IL-1 induces the full spectrum of sickness behavior, but other inflammatory agents can directly or through IL-1 release elicit
many aspects as well. IL-1 transport across the BBB of the posterior division of the septum (PDS) acts there to induce cognitive impairments.
Prostaglandin E2 (PGE2) produced by stimulation of BEC COX-1 and COX-2 alters the HPA, induces fever, and results in malaise/discomfort, the
latter mediated through dopaminergic and GABAergic pathways. COX-2 of non-BEC origin mediates anorexia. Depression-like symptoms are
mediated through enhanced activity of indoleamine 2,3-dioxygenase (IDO), resulting in increased blood levels of kynurenine, which crosses the BBB
using the large-neutral amino acid transporter (LAT-1). Kynurenine entry into brain is opposed by a brain-to-blood efflux transporter. Taste aversion is
COX-2 independent; mechanisms of many other sickness behaviors are yet to be fully elucidated.
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plexus also occurs, and this T-cell founder population is
thought to contribute to activation of CNS parenchy-
mal vessels and the subsequent robust recruitment of
T-cells across the vascular BBB into the spinal cord
parenchyma (Reboldi et al., 2009).
It is also appreciated that CNS autoreactive T-cells

rapidly home to peripheral secondary lymphoid organs
following peripheral injection, followed by their egress
back into the blood and subsequent recruitment to the
CNS, where they initiate the symptomatic phase of
EAE (Flugel et al., 2001; Odoardi et al., 2012). Fur-
thermore, T-cells that were reisolated after homing to
lymphoid tissues could rapidly cross the BBB and
initiate disease sooner in naive recipients (Odoardi
et al., 2012), suggesting that homing to peripheral
lymphoid tissues contributes to the clinical course of
EAE. Notably, this same study found that the
bronchus-associated lymphoid tissues (BALT) were a
major site of T-cell homing. Although rats express
BALT constitutively, in mice and humans, BALT is
induced under conditions such as respiratory infec-
tions or chronic pulmonary diseases (Hwang et al.,
2016). Whether inducible BALT also contributes to MS
or EAE is not clear; however, inflammatory stimuli
such as infections or toxicants that induce BALT may
also be relevant in symptomatic MS (Dendrou et al.,
2015).
Pathologic changes at the BBB are also observed in

MS lesions, and these include changes in expression of
TJ proteins (Plumb et al., 2002; Kirk et al., 2003).
Fibrinogen leakage is also evident in MS lesions, and
fibrinogen can be a potent activator of microglia (Adams
et al., 2007; McQuaid et al., 2009). Proteins implicated
in BBB maintenance are also affected during MS.
Endothelial IL-25 is downregulated in active MS le-
sions, indicating a loss of BBB protective functions. In
contrast, sonic hedgehog is upregulated in EAE and in
activeMS lesions, whichmay be a protective response to
counteract leukocyte trafficking and demyelination
(Adams et al., 2007).
There are currently many disease-modifying thera-

pies for relapsing-remitting MS, and one recently
approved therapy for primary-progressive MS
(English and Aloi, 2015; Dargahi et al., 2017). In
general, these therapies are immunomodulatory,
limit lymphocyte proliferation, inhibit lymphocyte traf-
ficking, and/or protect against oxidative damage
(English and Aloi, 2015; Dargahi et al., 2017). Despite
their disease efficacy, some MS therapies that deplete
T-cells or that inhibit T-cell trafficking are associated
with progressive multifocal leukoencephalopathy
(PML), which is a rare condition caused by reactivation
of the JC virus in the CNS (Misbah, 2017). The
association of PML with T-cell deficiency underscores
a functional role for T-cells in protecting the CNS from
latent viral infections and will be discussed in detail
below.

D. Human Immunodeficiency Virus-1 Penetration of
the Blood–Brain Barrier and Consequences of Human
Immunodeficiency Virus-1 Infection on Blood–Brain
Barrier Function

HIV infection continues to be a burden in developed
and underdeveloped nations, and it is estimated that
over 30 million people worldwide are HIV positive (Hong
and Banks, 2015). One complication of HIV infection is
CNS dysfunction, termed HIV-associated neurologic
disorder (HAND) (Saylor et al., 2016). HAND encom-
passes diverse clinical symptoms, ranging from mild,
asymptomatic neurocognitive impairment to dementia
in the most severe cases, and about 50% of HIV-positive
patients are afflicted with HAND (Heaton et al., 2010).
Prior to the widespread use of highly active antiretro-
viral therapy (HAART), about 20% of HIV-infected
patients eventually developed HIV encephalitis (HIVE)
(Gelman, 2015). The major neuropathological changes
associated with HIVE included microglia nodules and
multinucleated giant cells, which were associated with
active HIV infection predominantly in microglia and
brain macrophages (Gelman, 2015). However, in the
post-HAART era, HIVE is increasingly rare, and neuro-
pathological features of milder forms of HAND include
synaptic loss and neuroinflammation, but not overt
neurodegeneration (Everall et al., 1999; Gelman, 2015).

HIV establishes reservoirs in the CNS soon after
infection (Davis et al., 1992; Persidsky and Poluektova,
2006), and HIV entry into the CNS is thought to occur by
free virus as well as infected monocytes or T-cells
entering the CNS via hematologic routes across brain
barriers (Hong and Banks, 2015). HIV-1 pseudovirus
crosses the BBB by adsorptive transcytosis via the
mannose-6-phosphate receptor (Banks et al., 2001b,
2005; Dohgu et al., 2012), and vesicular uptake of HIV
in BECs has been demonstrated ultrastructurally within
minutes of injection (Dohgu et al., 2012). HIV-infected
monocytes are also believed to cross the BBBwithin days
of initial infection. HIV-infected monocytes can cross the
BBB in vitro, and cell–cell contacts between HIV-
infected monocytes and human BECs initiate the upre-
gulation of E-selectin on BECs (Nottet et al., 1996).
Furthermore, E-selectin andVCAM-1 are upregulated in
brains of AIDS patients with HIVE, and tissue-binding
assays revealed that human monocytes preferentially
bound endothelial cells in brain tissue regions where
E-selectin and VCAM-1 were upregulated in HIVE pa-
tient samples (Nottet et al., 1996). Upon CNS entry, HIV
is thought to predominantly infect perivascular macro-
phages during peak viremia (Williams et al., 2001), and
subsequently, establish reservoirs in brain macrophages
and microglia (Schnell et al., 2011; Joseph et al., 2015).
Infected microglia may then propagate neuroinflamma-
tion, which subsequently recruits leukocytes to the CNS,
including those infected by HIV (Fischer-Smith et al.,
2001; Yadav and Collman, 2009; Gray et al., 2013).
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Systemic and neuroinflammation may contribute to
CNS invasion of HIV. LPS enhances the transport of
gp120 and HIV-1, and pericytes contribute to the
increased transport of HIV-1 in vitro (Banks et al.,
1999; Dohgu and Banks, 2013). The LPS-induced
increases in transport of free HIV across the in vitro
BBBaremediatedby IL-6 andgranulocyte cell-stimulating
factor (Dohgu et al., 2011). LPS also potentiates the
upregulation of VCAM-1 and E-selectin induced by
HIV-1–infected monocytes (Nottet et al., 1996). Nota-
bly, the activation of circulating immune cells by
bacterial antigens may be relevant in the course of
HIV, as the acute phase of HIV infection is associated
with increased gut permeability, microbial transloca-
tion, and increased concentrations of circulating LPS
(Douek, 2007). HIV also hasmodulatory effects onBECs
and induces the upregulation and release of BEC
endothelin-1 (Didier et al., 2002), a cytokine whose
levels in CSF correlate with the degree of HIV enceph-
alopathy (Rolinski et al., 1999). Tat and gp120 induce
oxidative stress in BECs (Price et al., 2005), and blood-
borne factors in gp120mice are sufficient to induce BBB
disruption (Cioni and Annunziata, 2002). There is also
evidence of BBB disruption in HAND. In autopsied
brain tissue from HIV-positive patients with encepha-
litis, there were discontinuities in ZO-1 and occludin
staining in regions with astrocytosis and accumulation
of HIV-infected macrophages (Dallasta et al., 1999).
As many anti-retroviral therapy (ART) drugs are

ABC transporter substrates, altered ABC transporter
expression during HIV infection may have important
consequences on the pharmacokinetics and pharmaco-
dynamics of ART (Seifert et al., 2017), including their
efficacy in suppressing HIV in the CNS. Low-grade,
chronic inflammation is evident in HIV-1–infected
patients, including those on ARTwith viral suppression
(Seifert et al., 2017), and inflammatory substances such
as bacterial cell wall constituents and cytokines are
known to alter the expression and functions of ABC
transporters at the BBB (see section IV.I., below).
Application of the HIV-1 protein Tat to mouse brain
microvessels in vitro and to mouse brains in vivo
upregulates the expression and function of Pgp
(Hayashi et al., 2005). Furthermore, exposure of pri-
mary human brain endothelial cells to HIV-1 induces
increased expression of Pgp mRNA, but functional
increases in Pgp were not evident unless the cells were
coexposed to HIV-1 and a HIV protease inhibitor (Roy
et al., 2013). Conversely, a nonsignificant decrease in
brain microvascular Pgp expression was observed in
autopsied brain tissue from AIDS patients with HIVE
versus AIDS patients without HIVE (Langford et al.,
2004). Disparities in Pgp changes at the BBB observed
in cells and mice acutely treated with HIV-1 and its
proteins versus autopsied human brain tissue could, in
part, be explained by the chronicity of HIV-1–associated
inflammation that may contribute differently to

transporter expression versus acute exposure to HIV-
1. Furthermore, functional changes in Pgp can be
regulated post-translationally (Hawkins et al., 2010),
and therefore may not always be reflected in the
assessment of protein expression. HIV-1 infection is
also known to affect ABC transporters, including Pgp,
BCRP, and MRPs in other tissue types, including glial
cells that may affect ART distribution in the CNS and
NVU function (Alam et al., 2016).

In summary, the interaction of HIV with brain
barriers is necessary to establish CNS infection early
in the course of disease, and subsequent BBB-
disruptive and proinflammatory responses to CNS
HIV infection contribute to the persistent recruitment
of HIV to the CNS and damaging neuroinflammatory
responses that contribute to the development of HAND.

E. Amyloid b Peptide and Alzheimer Disease

AD is a progressive neurodegenerative disease char-
acterized by dementia and deposition of Ab and t in
brain regions that are important for learning and
memory [for a recent review, see Masters et al.
(2015)]. Ab accumulation, aggregation, and deposition
in the CNS are thought to be a causative pathologic
event in AD (Selkoe and Hardy, 2016). The CNS
prevents Ab deposition by a number of mechanisms,
including enzymatic degradation, microglial phagocy-
tosis, clearance by CSF bulk flow, and efflux at the BBB.
Furthermore, impaired efflux of Ab across the BBB has
been implicated in AD pathogenesis. LRP-1 is an efflux
transporter located on brain endothelial cells and
choroid plexus epithelial cells whose ligands include
Ab (Shibata et al., 2000; Deane et al., 2004; Donahue
et al., 2006; Fujiyoshi et al., 2011). Impaired efflux of Ab
from the CNS occurs in AD patients and in animal
models of AD largely because of impaired function of
LRP-1 (Erickson and Banks, 2013). There is also an
influx transporter for Ab, the RAGE, which facilitates
the passage of Ab from the blood-to-brain direction and
is upregulated in AD (Deane et al., 2003). Additionally,
ABC transporters including Pgp and BCRP are thought
to contribute to Ab efflux, either by facilitating trans-
cytosis of Ab in the brain-to-blood direction across the
luminal membrane of brain endothelial cells, or by
limiting the influx of Ab that is circulating in blood
(Tai et al., 2009; Hartz et al., 2010; Do et al., 2012). The
efflux transporter, Pgp, is downregulated in AD (van
Assema and van Berckel, 2016).

AD has several links to inflammation, including being
considered a proinflammatory disease and the long-held
clinical observation that infections or other inflamma-
tory events can unmask or worsen AD (Holmes, 2013).
Systemic inflammation can increase Ab production, as
well as inhibit major Ab clearance mechanisms, in-
cluding CSF bulk flow and Ab efflux across the BBB
(Lee et al., 2008; Jaeger et al., 2009b; Erickson et al.,
2012b). LRP-1 transport activity is inhibited by
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inflammation and results in decreased efflux of Ab
peptide from the brain (Erickson et al., 2012b). De-
creased efflux of Ab peptide as shown in LRP-1
knockdown mice results in increased brain levels of
Ab peptide and cognitive impairment (Jaeger et al.,
2009a; Storck et al., 2016). Thus, decreasing LRP-1
function could be one mechanism by which inflamma-
tion enhances the onset, progression, or unmasking of
AD. Systemic inflammation also modulates Pgp expres-
sion and function (see Introduction) and increases Ab
influx in the absence of changes in RAGE protein
expression in brain microvessels (Jaeger et al., 2009b).

F. Neuromyelitis Optica

Neuromyelitis optica (NMO), like MS, is an autoim-
mune inflammatory disease resulting in demyelination
that affects the optic nerve and spinal cord (Khorooshi
et al., 2015). Autoantibodies directed at aquaporin-4, a
water channel primarily located on brain ependymal
cells and astrocytes, are considered the immediate
cause, resulting in astrocytic activation, complement
fixation, neuroinflammation with cytokine release,
immune cell infiltration, and BBB disruption.
Aquaporin-4 is highly expressed in ependymal cells,
neuroepithelium denudation occurs in NMO, and anti-
aquaporin antibodies are elevated in the CSF, all
suggesting that NMO involves the choroid plexus or
blood–CSF barrier (Castaneyra-Ruiz et al., 2014). The
antibody is an IgG that must reach the brain to induce
disease and is ineffective when given peripherally unless
the animals already have CNS inflammation resulting
from a NMO-like picture (Castaneyra-Ruiz et al., 2014).
Other autoantibodies are found in NMO, including

those directed against the myelin oligodendrocyte gly-
coprotein, N-methyl-D-asparate–type glutamate recep-
tor, glycine receptor, and glucose-regulated protein
78 (GRP78) (Shimizu et al., 2017). GRP78 is a heat-
shock protein and expressed in all brain cells, including
BECs. Autoantibodies to GRP78 bind to BECs and
increase nuclear factor kB (NF-kB) and intercellular
adhesion molecule, decrease claudin-5, and increase
BBB leakage to macromolecules, including fibrinogen,
albumin, and IgG (Shimizu et al., 2017). Anti-GRP78 is
also found in diseases that do not have NMO, such as
some cancers and systemic lupus erythematosis. Thus,
GRP78 autoantibodies are unlikely to cause NMO, but
do appear to be altering several aspects of BBB function,
including NF-kB–mediated immune functions, immune
cell trafficking, and a BBB disruption that is possibly
mediated by transcytotic mechanisms.

G. Euthyroid Sick Syndrome

Tanycytes are involved in the mechanism by which
systemic inflammation induces euthyroid sick syn-
drome (Lee and Farwell, 2016), a condition by which
the body can decrease its caloric needs in times of
illness. Like sickness behavior, euthyroid sick

syndrome, also known as nonthyroidal illness syn-
drome, can be considered adaptive, at least short-
term. A hallmark of euthyroid sick syndrome is a low
blood level of thyroid-stimulating hormone (TSH) in the
face of low blood levels of thyroid hormones, especially of
triiodothyronine (T3); this is paradoxic in that low
thyroid hormone levels should stimulate TSH. This
paradox is evidence of the resistance to the stimulatory
effects of TSH and of thyroid-releasing hormone in this
condition. Inflammation increases type 2 deiodinase in
hypothalamic tanycytes, which is dependent on the
RelA subunit of NF-kB (de Vries et al., 2016). This
increase in type 2 deiodinase at the tanycyte results in
an increase in T3 locally within the hypothalamus, the
increased T3 in turn suppressing the expression of
thyroid-releasing hormone and its ability to stimulate
TSH (de Vries et al., 2014, 2016), and the suppression in
TSH, finally resulting in lower levels of thyroid hor-
mones in blood.

H. Chemobrain

Chemotherapy-induced cognitive dysfunction (CICD)
or “chemobrain” is a syndrome of cognitive impairment
that occurs in about 30%–70% of cancer victims treated
with various chemotherapeutics and lasts long after the
discontinuation of the chemotherapies. The mechanism
by which a chemotherapeutic such as doxorubicin (Dox;
also known as adriamycin) induces CICD is unclear, as
Dox is prevented from crossing theBBB byPgp (Darvari
and Boroujerdi, 2005). Onemechanism (Fig. 7) by which
Dox could induce CICD directly involves the BBB’s
ability to transport TNF (Gutierrez et al., 1993). In
brief, Dox produces superoxide free radicals, oxidizing
ApoA1 in blood, which then induces monocytes and
macrophages to release TNF into the bloodstream
(Tangpong et al., 2006, 2007). TNF is transported across
the BBB by a saturable transport system (Gutierrez
et al., 1993) into the CNS. TNF transported across the
BBB induces oxidative and nitrosative stress within the
brain and acts directly on glial cells to induce them to
release TNF (Joshi et al., 2010). Mn superoxide dis-
mutase, which scavenges superoxide inmitochondria, is
nitrated and dysfunctional, leading to mitochondrial
damage and apoptosis (Tangpong et al., 2006, 2007).
TNF, both that derived from the blood and from the
CNS, induces neuronal toxicity and apoptosis, resulting
in the behavioral changes of CICD (Aluise et al., 2011;
Keeney et al., 2013; Butterfield, 2014).

Notably, the oxidative stress and inflammation
known to be caused by some chemotherapeutics may
also affect their disposition in the brain, as many
chemotherapeutic drugs are also ABC transporter
substrates (Deeken and Loscher, 2007), and ABC trans-
porters are regulated by neuroinflammation (see section
I). For example, Dox was shown to increase MDR-1
expression in whole brains of rodents (Joshi et al., 2010).
The relationship of chemotherapy-associated systemic
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and neuroinflammation and subsequent effects on the
regulation of ABC transporters at the BBB is an
important, yet understudied topic of relevance to brain
cancer therapy.

I. Inflammation, ATP-Binding Cassette Transporters,
and Central Nervous System Drug Delivery

The presence of multidrug efflux transporters at the
BBB limits the distribution of many classes of drugs to
the CNS, including those for cancer, viral and bacterial
infections, epilepsy, and pain (Loscher and Potschka,
2005). In many of these conditions, systemic and/or
neuroinflammation occurs, which can alter efflux trans-
porter expression at the BBB. For example, Pgp
expression and function are modulated by LPS and
proinflammatory cytokines. However, the effects of
inflammation on Pgp vary depending on the inflamma-
tory model. Pgp activity at the BBB is downregulated in
rodents when inflammation is initiated with LPS in the
peritoneum, skin, or the lateral ventricle (Goralski
et al., 2003; Salkeni et al., 2009; Jin et al., 2011;
Erickson et al., 2012a). In contrast, inflammatory pain
in rodents upregulates Pgp protein expression and
function, limiting the uptake of morphine into the
CNS (Seelbach et al., 2007). Isolated rat brain micro-
vessels treated with low levels of LPS or TNF-a cause a
rapid, reversible loss of Pgp activity with no change in
protein expression (Hartz et al., 2006). However, longer
exposure to TNF causes an upregulation of Pgp expres-
sion and activity (Bauer et al., 2007; Yu et al., 2007).
TGF has also been shown to upregulate Pgp function
(Dohgu et al., 2004). TNF also decreases expression of
Mrp2 and Mrp4, and does not affect protein expression
of Mrp1 and BCRP in isolated rat brain microvessels
(Bauer et al., 2007). BCRP expression and activity are
reduced by IL-1b, IL-6, and TNF-a in a humanBEC line
(Poller et al., 2010).
Neuroinflammation may alter the efficacy of CNS

therapeutics by altering the expression of efflux

transporters, as was discussed for ABC transporter
expression in HIV infection in a prior section. There
are multiple classes of drugs that are prescribed,
typically in combination, for the treatment of HIV-1
infection that target various stages of the HIV replica-
tion cycle. These include fusion inhibitors, nucleoside
reverse transcriptase inhibitors (NRTIs), non-NRTIs
(NNRTIs), protease inhibitors, and integrase strand
transfer inhibitors. The current HAART regimens rec-
ommended by the World Health Organization as first-
line treatment of HIV-1 infection in adults consist of two
NRTIs plus a NNRTI or an integrase strand transfer
inhibitor. Currently, the preferred drug regimen to
initiate ART in HIV-1–infected adults includes a
fixed-dose combination of tenofovir (NRTI), lamivudine
or emtricitabine (NRTI), plus efavirenz (NNRTI). Rec-
ommendations for alternative treatment regimens and
second-line treatments in individuals with viral failure
have also recently been updated by WHO (2016). HIV
protease inhibitors, integrase inhibitors, and the nucle-
oside analog reverse-transcriptase inhibitor zidovudine
are ABC transporter substrates. In human BECs, Pgp
and MRPs limit the uptake of saquinavir and zidovu-
dine (Eilers et al., 2008). Indinavir, nelfinavir, and
atazanavir are also substrates of Pgp (Kim et al.,
1998; Robillard et al., 2014a,b). Furthermore, saquina-
vir can upregulate the expression and function of Pgp on
BECs (Roy et al., 2013), whereas ritonavir inhibits
MRP-1 (Olson et al., 2002). Altered expression of brain
efflux transporters was also observed in a transgenic rat
model of HIV-1 infection (Robillard et al., 2014b).

Pgp upregulation has been reported in rodent stroke
models with or without reperfusion (Spudich et al.,
2006; Cen et al., 2013; DeMars et al., 2017). Further-
more, upregulation of Pgp expression in these models is
concurrent with reduced CNS uptake of Pgp substrates,
despite evidence of BBB disruption (Spudich et al.,
2006; Cen et al., 2013). Hypoxia and low glucose
mediate Pgp upregulation in brain endothelial cells

Fig. 7. Chemobrain or CICD. The BBB is involved in mediation of chemobrain in two known ways. The efflux transporter Pgp prevents doxorubicin
from entering the brain. TNF is transported across the BBB, where it acts directly to induce apoptosis as well as to induce release of additional TNF
from glial cells.
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in vitro, which may, in part, be due to the upregulation
of hypoxia-inducible factor-1 (Comerford et al., 2002;
DeMars et al., 2017). Notably, Pgp inhibition improved
the neuroprotective effects of FK506 and rifampicin in a
rodent stroke model (Spudich et al., 2006). Therefore,
therapeutic efficacy of neuroprotective agents in stroke
depends in part on whether they are Pgp substrates.
About 30% of patients are resistant to anti-epileptic

drugs, and this may be because they are the group who
is genetically determined to have an increased Pgp
activity (Loscher and Potschka, 2002). Upregulation of
Pgp from multiple seizures is thought to be neuro-
immune mediated and may underlie why patients in
status epilepticus are so resistant to treatment (Loscher
and Potschka, 2002; Rizzi et al., 2002; Lazarowski et al.,
2004; Kumar et al., 2014).
Pgp also plays a role in brain uptake, accumulation,

and efflux of Ab peptide, morphine, opiate peptides, and
chemotherapeutics (Letrent et al., 1999; Thompson
et al., 2000; Lam et al., 2001; Kastin et al., 2002;
Darvari and Boroujerdi, 2005; Erickson et al., 2012b).
As such, neuroimmune-related alterations in Pgp func-
tion at the BBB provide another mechanism by which
inflammation can affect AD, analgesia, and response of
CNS cancers to chemotherapeutics.

J. Emergence of Progressive Multifocal
Leukoencephalopathy Associated with Therapies That
Inhibit T-Cell Immune Surveillance

Progressive multifocal leukoencephalopathy is a dev-
astating infection of the brain caused by lytic reactiva-
tion of the JC polyoma virus. About 30%–90% of the
human population is seropositive for JC virus (Misbah,
2017), and early studies using polymerase chain
reaction–based methods of detection indicated that
about 50% of non-PML presenting cases had detectable
levels of JC virus in their brains (White et al., 1992).
However, JC virus persists as a latent, asymptomatic
infection in immunocompetent individuals. PML was
first reported as a rare side effect of chemotherapy in
patients with leukemia and lymphoma (Astrom et al.,
1958), and subsequent PML cases prior to the HIV
epidemic were associated with immunosuppressive
therapies or rare primary immunodeficiencies (Bag
et al., 2010). An increase in PML cases emerged during
the early AIDS epidemic, and about 5% of AIDS patients
developed PML prior to the widespread use of HAART
(Berger et al., 1998). The emergence of PML in AIDS
patients led to the realization that severe deficiency in
T-cell immunity is necessary for JC virus activation and
neurotropism (Misbah, 2017).
In the post-HAART era, there has been a dramatic

decrease in the incidence of PML associated with HIV-1
infection (Bag et al., 2010). However, new cases of PML
have emerged as side effects of new immunosuppressive
and immunomodulatory therapies. One example is
natalizumab, which is amonoclonal antibody that binds

a4b1 and a4b7 integrins, and interferes with a4 integrin
interactions with VCAM-1 that mediates T-cell traffick-
ing to the CNS. Soon after its approval, two participants
from the phase III trial developed PML. Notably, PML
had not previously been associated with MS, and so
natalizumab was temporarily suspended from the
market (Misbah, 2017). After a detailed assessment of
all patients receiving natalizumab, the risk for PML
was estimated to be approximately 1/1000, and thus
determined to be sufficiently low to continuemarketing.
However, it is now appreciated that the PML risk for
natalizumab may be as high as 1/44, depending on the
length of treatment, JC virus seropositivity, and prior
treatment with immunosuppressive drugs (Misbah,
2017). Notably, another a4 integrin inhibitor, vedolizu-
mab, which is specific for a4b7 and indicated for Crohn’s
disease, has not been associated with PML (Dallasta
et al., 1999). This indicates that it is specifically the
impairment of lymphocyte trafficking to the brain that
increases PML risk, and that T-cells are important
contributors to CNS immunity.

K. IL-1ra, Febrile Infection-Related Epilepsy
Syndrome, and Neonatal-Onset Multisystem
Inflammatory Disease

The treatment of two childhood diseases apparently
depends on the ability of IL-1ra to cross the BBB.
Neonatal-onset multisystem inflammatory disease,
also known as chronic infantile neurologic cutaneous
articular syndrome, presents as a rash before age
6 weeks and has several CNS manifestations, including
chronic aseptic meningitis, cerebral atrophy with en-
larged ventricles, increased intracranial pressures,
papilledema with optic nerve atrophy, mental retarda-
tion, seizures, and sensorineural hearing loss. About
60% of cases have a mutation in the CIAS1 gene that
encodes for cryopyrin, a protein that forms part of a
macromolecular inflammasome, activating caspase 1,
which, in turn, cleaves pro–IL-1b.

Inflammation can be causal in certain types of
epilepsies, and febrile infection-related epilepsy syn-
drome (FIRES) is one example (Nabbout, 2012). FIRES
involves acute onset of refractory seizures following a
febrile infection. However, CSF reveals no pathogens
and brain biopsies show gliosis but no inflammation.
Treatment with anakinra, an analog of IL-1ra, is very
effective at controlling CNS symptoms, including sei-
zures, in both these syndromes. This is consistent with
IL-1ra being able to control status epilepticus in a
rodent model (Marchi et al., 2009). Anakinra was more
effective than canakinumab, an antibody directed
against IL-1b, in lowering CSF cytokines (Rodriguez-
Smith et al., 2017). This difference between anakinra
and canakinumab may be that IL-1a, which is blocked
by anakinra but not by canakinumab, plays a role
in seizure activity, as indicated by genetic data
(Saghazadeh et al., 2014). Alternatively, anakinra
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may, like IL-1ra, be transported across the BBB to a
much greater extent than antibodies (Gutierrez et al.,
1994). CSF and serum levels of anakinra increase
arithmetically with increasing doses of i.v. anakinra
(Fox et al., 2010). CSF/Serum ratios calculated as
individual time points or as areas under the curve give
values of about 0.28%.

L. Immunomodulatory Therapies and Stroke

Ischemic stroke results from blockage of a cerebral
artery, either due to the local formation of a thrombus or
a distal embolism. Current treatments for ischemic
stroke rely on rapid clearance of the blockage by
proteolytic or mechanical approaches (Emberson et al.,
2014; Campbell et al., 2015), and tissue plasmino-
gen activator remains the only Food and Drug
Administration–approved treatment of ischemic stroke.
However, the prospects of immunomodulatory thera-
pies in stroke have been and continue to be tested in
clinical trails (Veltkamp and Gill, 2016). One approach
to modulate neuroinflammation in stroke is via the
inhibition of leukocyte trafficking to the brain by
targeting specific cell adhesion molecules that are
expressed on leukocytes or brain endothelial/epithelial
cells. Such treatments have had varied success in
clinical trials (Veltkamp and Gill, 2016). Recent find-
ings that leukocytes can be protective under certain
conditions of CNS injury (Shechter et al., 2013) and that
novel pathways of leukocyte trafficking to peri-infarct
areas have been identified that cirvumvent conven-
tional routes of BBB transport (Llovera et al., 2017)may
provide important insight for future directions in this
therapeutic approach.
IL-1 is also an important mediator in stroke, and

blockade of IL-1 receptor signaling is another therapeu-
tic strategy for stroke under active investigation
(Sobowale et al., 2016; Veltkamp and Gill, 2016). An
IL-1ra analog modified by attaching a 21-amino-acid
cell-penetrating peptide to the C terminus showed a
twofold to fourfold increase in brain uptake. This
increase in uptake was not accountable by improved
pharmacokinetics. In a strokemodel, both native IL-1ra
and the analog showed improvements in infarct size,
neurologic scores, brain edema, oxidative stress mea-
sures, and motor performance, but the analog was
superior to native IL-1ra (Zhang et al., 2017a). That
IL-1ra exerts its improvement on stroke through a
central mechanism was further shown by positive
effects after delivery to the brain using the intranasal
route (Frey, 2002; Lee et al., 2017).

M. Methamphetamine and Blood–Brain
Barrier Alterations

Methamphetamine is prescribed in the United States
as a treatment of obesity, attention deficit hyperactivity
disorder, narcolepsy, and idiopathic hypersomnia, and
is over-the-counter in its levo-form as a nasal

decongestant. It is best known as a recreational drug
with high addiction potential and a high degree of
neurotoxicity, especially to dopamine neurons. Meth-
amphetamine alters BBB, BEC, and NVU function. In
BECs, methamphetamine induces oxidative stress, in-
ducing changes in myosin light chain kinases and actin-
related protein 2/3, resulting in decreased TJ proteins
and increased monocyte migration (Ramirez et al.,
2009; Zhang et al., 2009; Park et al., 2013). HIV-1 and
methamphetamine have a complex relationship, in-
cluding each enhancing the oxidative stress and BBB
changes induced by the other (Banerjee et al., 2010).
Similar events occur in the blood–spinal cord barrier
(Kiyatkin and Sharma, 2015). Autopsy material from
methamphetamine users show increased expression of
aquaporin-4 and matrix metalloproteases and de-
creased TJ protein expression (Wang et al., 2014a).
Pericyte migration and alterations in astrocytic aqua-
porin 4 levels, the latter resulting in vasogenic edema,
also occur after methamphetamine use (Leitão et al.,
2017; Zhang et al., 2017b). These changes likely result
from neuroinflammation, as evidenced by glial activa-
tion and cytokine release from astrocytes and BECs
(Loftis and Janowsky, 2014), including TNF-a and
IL-1b (Goncalves et al., 2017). TNF release from
astrocytes plays a role in methamphetamine-induced
BBB disruption, first resulting in an opening of the
transcytotic pathways and later in the paracellular
pathways (Coelho-Santos et al., 2015). Endothelin-1
from BECs activates endothelial nitric oxide synthase
and induces vasoconstriction (Seo et al., 2016). Inter-
estingly, exercise in mice protects against the BBB
changes ofmethamphetamine, possiblymediated by the
ability of exercise to lower levels of inflammatory
cytokines ((Allen et al., 2015; Park et al., 2016).

N. Cerebral Cavernous Malformations

Cerebral cavernous malformations are hemangiomas
in the brain and can result in seizures, focal neurologic
deficits, and hemorrhagic strokes. Three genetic muta-
tions resulting in loss of function have been identified
that affect signaling through Notch, mitogen-activated
protein kinase ERK1/2, WNT/b-catenin, and TFG-b
pathways (Schulz et al., 2015; Stamatovic et al., 2015;
Kim, 2016), leading to perictye loss and BBB leakiness.
Activation of Toll-like receptor 4 on BECs has been
associated with enhanced cerebral cavernous malfor-
mation formation, and the source of activation appears
to be the gut microbiome (Tang et al., 2017).

O. Antibody-Associated Autoimmune
Encephalitis Syndromes

A series of conditions that involve autoantibodies
directed against CNS receptors has been described in
recent years. The CNS antibodies presumably come in
part from the periphery and so likely cross the BBB
by way of extracellular pathways, although BBB
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disruption of antibodies secreted from immune cells
trafficking into the CNS is also a possibility. Antibodies
are usually IgG and can be targeted to a number of CNS
receptors; Oldham (2017) lists over two dozen condi-
tions, and Crisp et al. (2016) focus on 12. The most
common receptors known to be targeted are leucine-rich
glioma-inactivated protein 1, the N-methyl-D-asparate
receptor, and the glycine receptor. Leucine-rich glioma-
inactivated protein 1 is high in the hippocampus and
may be a modulator of the AMPA receptor, and
antibodies directed against it induce limbic encephali-
tis, characterized by progressive cognitive impairment
and seizures, often with hyponatremia. Other symp-
toms presented by these syndromes include narcolepsy,
psychoses, migraines, hallucinations, anxiety, weight
loss, and ataxia (Crisp et al., 2016). Onset of symptoms
is sometimes related to infections or linked to malig-
nancies, tumors, or autoimmune diseases, but a few
cases have been associated with immune therapy
(Brown et al., 2017). A few case reports place onset
after BBB-disrupting diseases, including stroke and
methamphetamine use (Simal et al., 2012; Iriondo et al.,
2017). Treatments are directed against the immune
response in some way and include steroids, cyclophos-
phamide, i.v. immunoglobulins, monoclonal antibodies,
and immunoadsorption (Hansen et al., 2016).

V. Conclusions and Future Directions

The BBBs endow the CNS with immune privilege by
preventing the unregulated exchange of immune-
related cells and substances between the CNS and
blood. The barriers, however, do allow regulated com-
munication between theCNS and the peripheral tissues
by a number of integrated mechanisms that can be
divided with current knowledge into five neuroimmune
axes. These axes depend on specialized properties of the
barrier cells, such as their abilities to secrete and
respond to immune-related substances, to recruit im-
mune cells and facilitate their passage across the BBB,
and to transport immune substances such as cytokines
from blood to brain. These axes allow the barrier cells to
engage in a two-way communication with circulating
immune cells and peripheral tissues via secretions into
the bloodstreamandmost of the known cell types within
the CNS; this concept of two-way communication is
embodied in the term NVU. Transport of substances
across the BBB and polarized secretions allows the BBB
to act as a conduit of information between the CNS and
peripheral tissues. As a result, the BBB is able to adapt
to the needs of the CNS and allows communication
between the peripheral tissues and the CNS.
These axes are important to the maintenance of

health, and their breakdown or failure can result in
disease. A number of conditions are recognized that
involve barrier cell/neuroimmune interactions that are
adaptive, such as sickness behavior and euthyroid sick

syndrome, or are clearly pathologic, such as multiple
sclerosis and chemobrain. These axes are relevant for
treatment of CNS diseases as well. In some cases, the
neuroimmune reactions run counter to therapeutic
intervention, as illustrated by upregulation of Pgp
activity with seizures and stroke, thus fostering drug
resistance. In other cases, the neuroimmune axes
participate in the therapeutic intervention, such as
the transport of IL-1ra in the syndromes of FIRES and
neonatal-onset multisystem inflammatory disease.

Future directions are likely to discover more func-
tions, properties, and interactions among the cells of the
NVU, and even new cell types in the periphery or CNS
may be discovered. Recent studies have emphasized the
importance of pericytes at the NVU, and there is
renewed interest in the mast cell. New functions and
even axes are likely to be discovered for the barrier cells:
the vascular BBB is an area that is greatly under-
studied, but the choroid plexus and tanycytic barriers
have even less work done on them. The literature of the
neuroimmunology of nerve blood barriers, the blood–
retinal barrier, and other specialized barriers is very
small. The number of disease states in which the brain
plays a role and that have an inflammatory or immune
aspect is growing tremendously. This review will hope-
fully serve as a guide as those conditions and diseases
are investigated from a neuroimmune point of view, but
will likely quickly become antiquated as new types of
interactions are discovered.

Perhaps the most exciting and promising area is that
of pharmacology and the treatment of conditions with
barrier/interface-neuroimmune components. Drugs
that can cross the BBB to access the CNS are critically
needed. But the various axes provide ways that
neuroimmune-modifying drugs can have targets on
the blood side of the barrier and still affect CNS
function. For example, decreasing Pgp activity in status
epilepticus could restore responsiveness. As Pgp is on
the luminal side of the BBB, allosteric regulators or
competitive blockers do not have to cross the BBB to
access the transporter. The ability of an immune sub-
stance to act at the luminal surface of the BBB and
modulate secretions from the BBB abluminal surface is
another strategy that does not require the xenobiotic to
enter the CNS. This strategy also has the advantage
that the therapeutic activity in the brain is produced by
the patient’s own body. Modulation of barrier cell
activities is also a strategy that only requires action at
the barrier cell itself, not penetration into brain. Re-
versal of euthyroid sick syndrome by targeting tanycyte
type 2 deiodinase or inhibiting fever by targeting
barrier cell cyclooxygenase in sickness behavior are
additional examples. Disruption of the BBB to enhance
drug delivery, although often tried, has yet to prove a
viable strategy because of the neurotoxicity that results
from a leaky BBB. Blockade of substances entering the
brain is another approach; for example, blocking
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circulating antibodies from entering the brain could be
effective in treatingNMOand autoimmune encephalitis
syndromes. The development of these and other strat-
egies for the treatment of CNS diseases will be de-
pendent on our understanding of the interplay of the
neuroimmune system with the BBBs and blood–brain
interfaces.
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